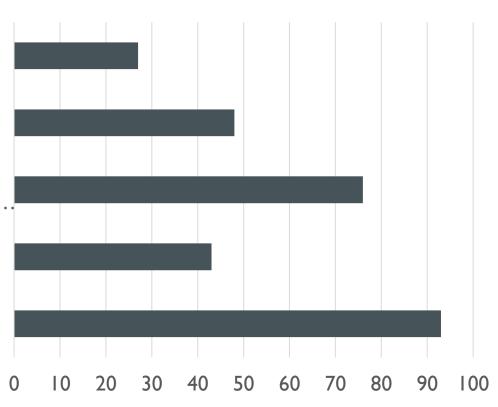
MAINTAINING RESILIENCY OF STORMWATER AND RESTORATION PRACTICES

PROGRESS UPDATE
JUNE 2020 USWG MEETING

QUICK REFRESHER

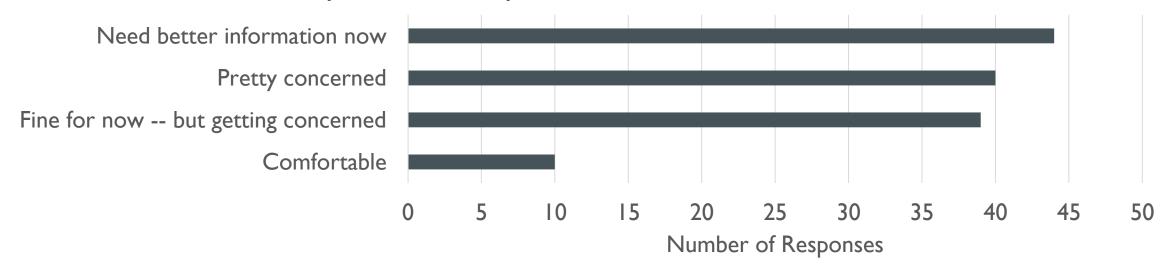
FROM MEMO I

 Biggest Concern is damage to public and private infrastructure – particularly roads, bridges and culverts – caused by large storm events


Blue sky flooding of roads and parking lots (in tidal areas), public and private

Increased flood damage to public open space, stream corridors and natural habitats

Declining performance of public and private stormwater management systems (quality and...


Public health and safety issues during floods and/or droughts; emergency response capabilities

Damage to Public and Private Infrastructure During Extreme Floods

FROM MEMO 1:

How comfortable are you with the quality and utility of the engineering design criteria on future rainfall intensity provided to you by state and/or federal authorities in your community?

WHAT'S AT RISK?

Public Infrastructure

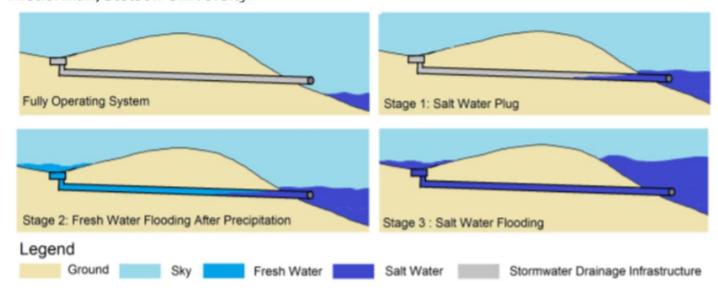
- Sewer pipe network
- Roads, streets and storm drains
- Bridges, culverts and crossings
- Water pipe distribution system
- Dams, embankments and flood control practices
- Public stream restoration projects
- Public stream corridor or waterfront
- Wastewater treatment plants and public works yards (floodplain)

Private Property

- Expansion of 100 year floodplain insurance boundaries
- Residential flood damage
- Shoreline engineering to prevent erosion
- Bank erosion/tree canopy loss
- Failure of privately- owned stormwater systems

LOOKING AT THE PROJECTIONS

WHAT'S COMING IN MEMO 3


IT'S ABOUT MORETHAN JUST RAINFALL

Temperature, Streamflow and Sea Level Rise all affect Stormwater Management

Figure 2.5: Stages of stormwater drainage failure due to sea-level rise. Graphic by Emily Niederman, Stetson University.

TEMPERATURE

Table 2. Change in temperature (°C) as compared to 1995

Geography	Year 2025	Year 2035	Year 2045	Year 2055
Delaware	1.03	1.36	1.65	1.93
Maryland	1.09	1.43	1.74	2.01
Virginia	1.07	1.41	1.73	1.97
Pennsylvania	1.17	1.51	1.89	2.12
District of Columbia	1.10	1.44	1.76	2.03
West Virginia	1.13	1.48	1.82	2.07
New York	1.19	1.54	1.93	2.18
CB Watershed	1.12	1.47	1.81	2.06

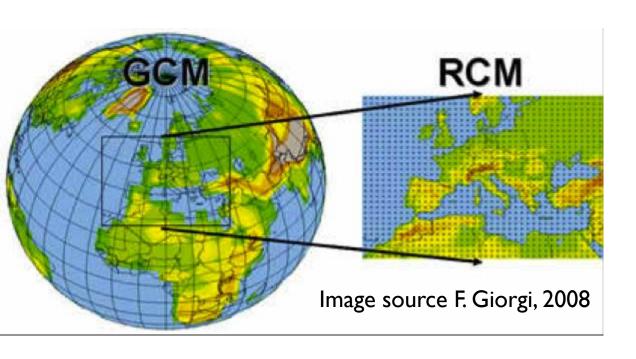
Source: CBP 2019 Climate Change Assessment

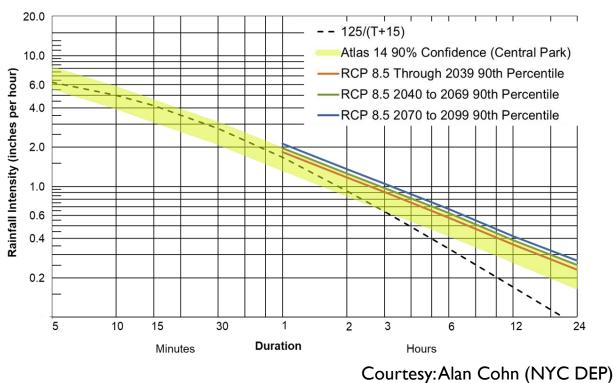
SEA LEVEL RISE

Table: Sea Level Rise (ft) compared to 1995, used in the 2019 CBP Climate Assessment

Geography	Year 2025	Year 2035	Year 2045	Year 2055
Chesapeake Bay	0.72	1.01	1.38	1.74

Source: CBP 2019 Climate Change Assessment


PRECIPITATION GETS A LITTLE TRICKIER


Table 3. Percent change in annual rainfall volume as compared to 1995

Geography	Year 2025	Year 2035	Year 2045	Year 2055
Delaware	2.06%	3.10%	4.14%	6.23%
Maryland	3.09%	4.13%	4.92%	6.70%
Virginia	2.56%	3.68%	5.23%	6.50%
Pennsylvania	3.28%	4.46%	5.07%	6.32%
District of Columbia	3.14%	4.11%	5.07%	6.83%
West Virginia	2.72%	3.73%	5.23%	6.53%
New York	5.00%	6.09%	5.99%	6.24%
CB Watershed	3.11%	4.23%	5.19%	6.44%

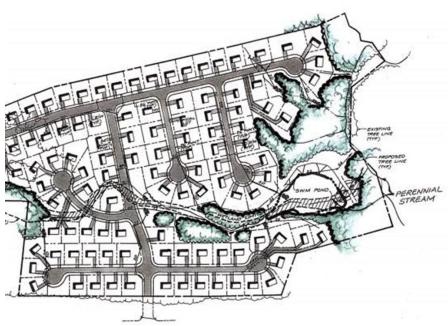
Source: CBP 2019 Climate Change Assessment

PRECIPITATION GETS A LITTLE TRICKIER

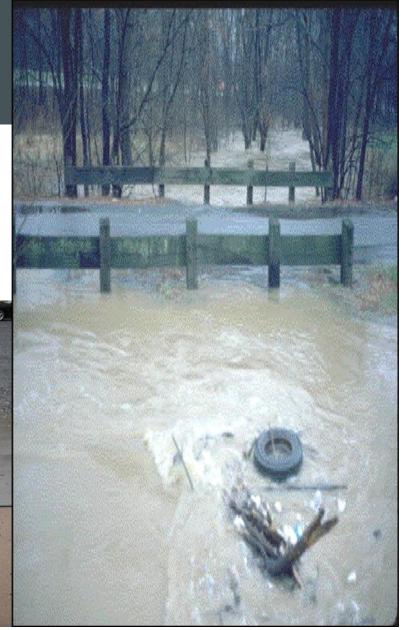
DRAFT Precipitation Downscaling Studies in the Mid-Atlantic

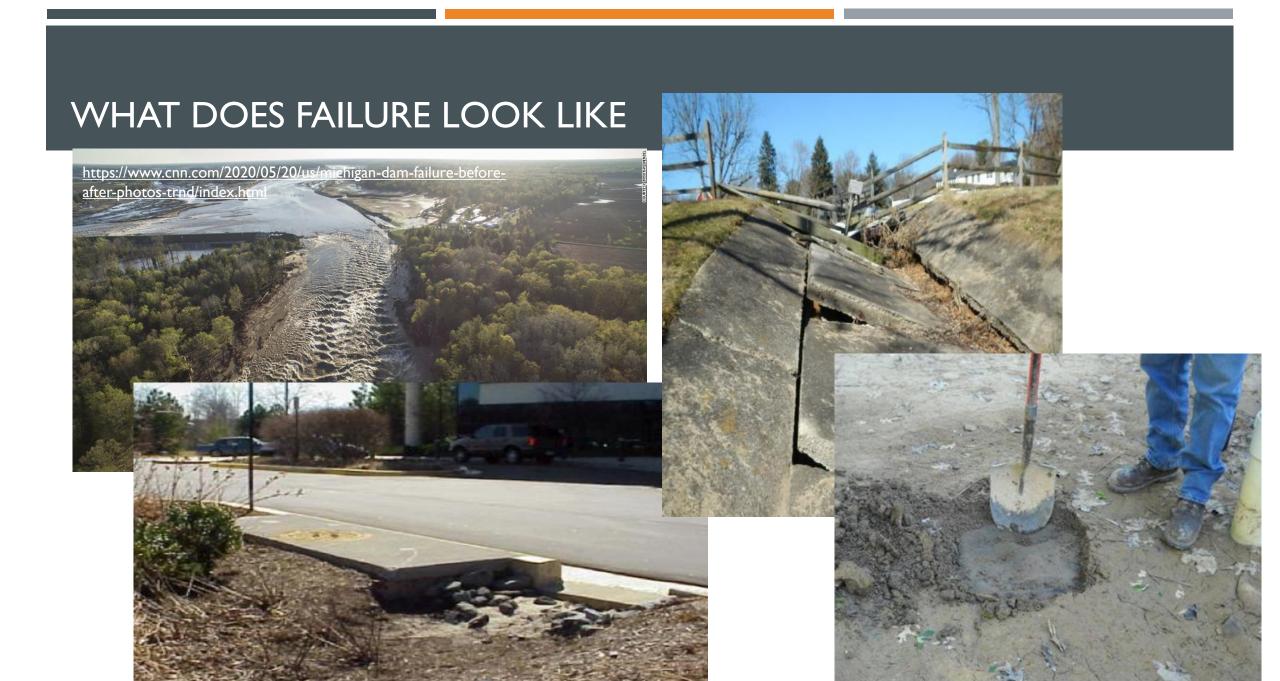
Study Location	Downscaling Method	RCPs Analyzed	Temporal and Geographic Scale
New York	Dynamical	RCP4.5	Temporal: 2010-2039, 2040-2069, 2070-2099
	Delta	RCP8.5	Geographic: Gauge
	Analogue		
Virginia Beach	Allalogue	RCP4.5	Temporal: 2026-2065, 2056-2095
l mga zeac			
	Dynamical	RCP8.5	Geographic: 11km grid (RCP8.5); 44km grid (RCP4.5)
Maryland Eastern			Temporal: 2041-2070
Shore	Delta	RCP8.5	
			Geographic: 750m grid
Philadelphia	Stochastic Rainfall	SRES A2 emissions	Temporal: 2080-2100
	Generator + Delta	(Roughly comparable to	
		RCP8.5)	Cooperation Course
			Geographic: Gauge
Virginia (ODU)		SRES A2 emissions	Temporal: 2035-2070
	Delta	(Roughly comparable to	
		RCP8.5)	
			Geographic: Gauge

GOALS


- Review the different efforts across the region to project future precipitation
- Understand considerations when selecting downscaling methods, timescales and resolution
- Identify trends in projected rainfall volume and intensity

BMP VULNERABILITY ANALYSIS


LOOKING AHEAD TO MEMO 4


WHAT BMPS ARE AT RISK

- Upland vs Stream Corridor
- Drainage Area Distributed LID vs Detention Ponds

WHAT ARE POTENTIAL DESIGN ADAPTATIONS

- Shorter practice lifespans?
- Retrofits/makeovers?
- More BMPs "treatment trains"?
- Improved plumbing (bypass/overflows)?
- Providing factor of safety (freeboard)?

QUESTIONS?