Improving Agreement between CAST and the Watershed Model Loads

CASTTOOL.ORG
MASTONLINE.ORG
VASTTOOL.ORG

Olivia H. Devereux and Jessica R. Rigelman

Outline

Goals for CAST

Load estimation methodology

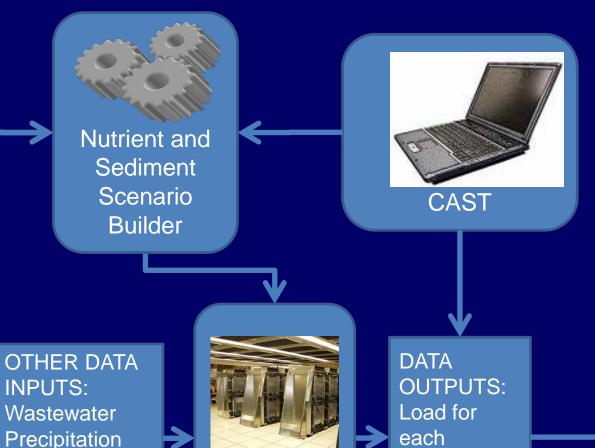
Initial validation results

Remaining work

GOALS FOR CAST

Chesapeake Bay Program Models

Meteorological


Elevation

Soil

DATA INPUTS:
Land uses
Wastewater
Septics
U.S. Population
Animal and Crop
Census

Airshed Model

Land Use Change Model

Watershed

Model-

HSPF

segment

and land

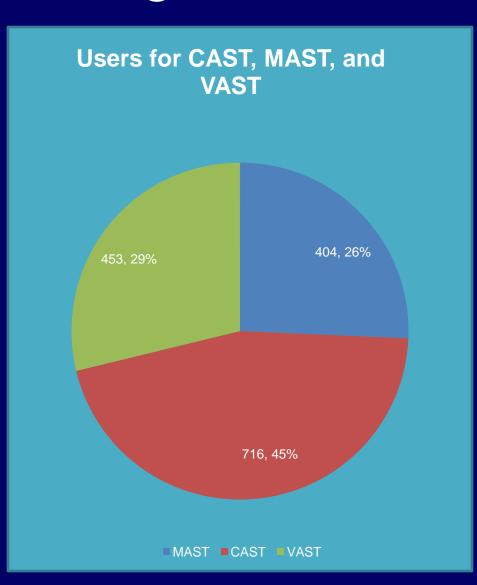
use

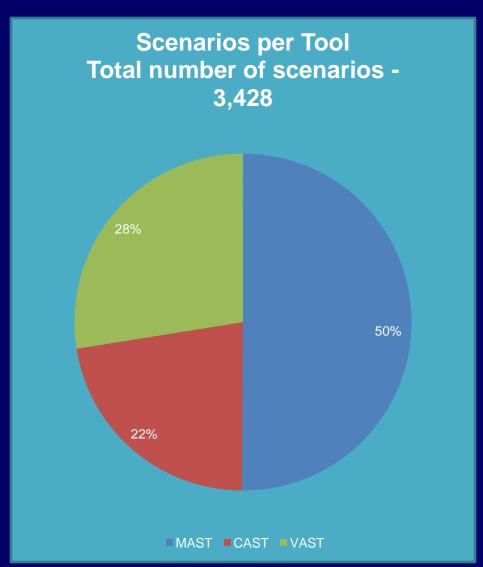
09/05/2013

Estuarine

Model

2025 Phase 2 WIP - York County Urban BMPs


Pre-BMP Landuse Acres	Non- Federal	Federal
CSS construction	0.0	0.0
CSS extractive	0.0	0.0
CSS impervious developed	0.0	0.0
CSS pervious developed	0.0	0.0
nonregulated extractive	0.0	0.0
nonregulated impervious developed	10,329.6	1.1
nonregulated pervious developed	40,372.1	2.7
regulated construction	1,637.0	0.1
regulated extractive	3,367.9	0.4
regulated impervious developed	25, 45 4.4	637.7
regulated pervious developed	78,007.7	845.7


Pre Bmp Landuse Raw Data 🔮

Select the BMP you would like to add:	
Bioretention/raingardens - A/B soils, underdrain	•
Select the land use or land use group you would like to apply the Bh	MP to:
Regulated urban	-
Land Group Components 🗵	
Select the geographic scale you would like to use to determine the	area for the BMI
County	~
Specify which geographic area you would like the BMP applied to:	
York, PA	-
Enter an amount and select a unit for the BMP:	
15	
Notes:	
New regulation planned, currently in public response period	
Add Reset	

Usage of CAST, MAST, and VAST

LOAD ESTIMATION METHODOLOGY

Source Data

Initial load from Watershed Model

- User Inputs
 - BMP
 - Geographic area
 - Land use
- Output
 - BMP summary
 - Estimated loads
 - Scenario Builder input files-validated and ready to run

Load Calculation

- Calculate an initial load for every land use in every modeling segment
 - Use an artificial land use
 - Land Segments = 377
 - River Segments= 1,084
 - Land uses = 31
 - Simulation Years = 20
 - Run the scenario with no BMPs
 - Run the scenario through Watershed Model

Load Calculation-cont.

- Apply load reduction same as the Chesapeake
 Bay Program models (same groups and sequence)
- Adjust the land use from user-entered BMPs
- Calculate the per acre load
- Output: User sees total load per segment
 - Multiply by acres
 - Shows edge of stream loads and load delivered to the Bay

Methodology for BMP Calculations

- CAST calculates all BMPs identically to the Chesapeake Bay Program's models except for Animal BMPs, BMPs in lbs, and any BMPs reduced by hydrological effects.
 - Animal BMPs affect the amount of manure
 - CAST calculates manure lbs based on user-selected BMP implementation level, same as Scenario Builder
- Distribution of manure lbs based on regressions
- Three classifications of manure
 - direct deposit manure (pasture land uses only)
 - storage loss manure (AFO/CFO)
 - stored manure (crop and pasture land)

Animal BMPs

BMPs that increase stored manure, which is then applied to crops and pasture

BMPs that decrease total manure

- Alum
- Lagoon Covers
- AWMS
- Mortality Composting

- Dairy Precision Feeding
- Poultry Phytase
- Swine Phytase

Factors Impacting Manure

- CAST calculates the amount of manure
- Regressions created using scenarios that included terms for:
 - BMP types and % implementation
 - Ratio of manure to land available
 - Nutrient management
 - Interaction effects

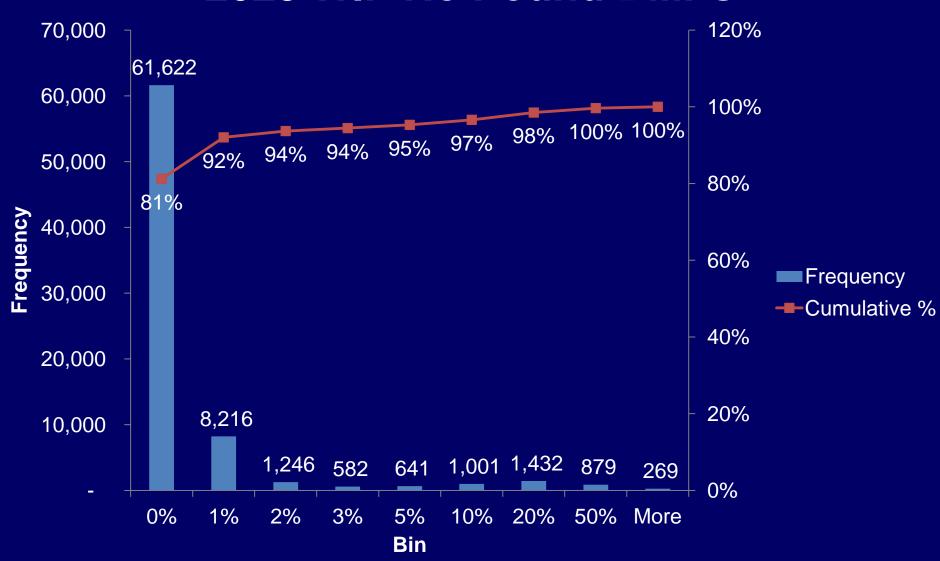
 The regression equations translate the manure into a loading rate by county, land use, and nitrogen or phosphorus.

135 Scenarios for Regressions

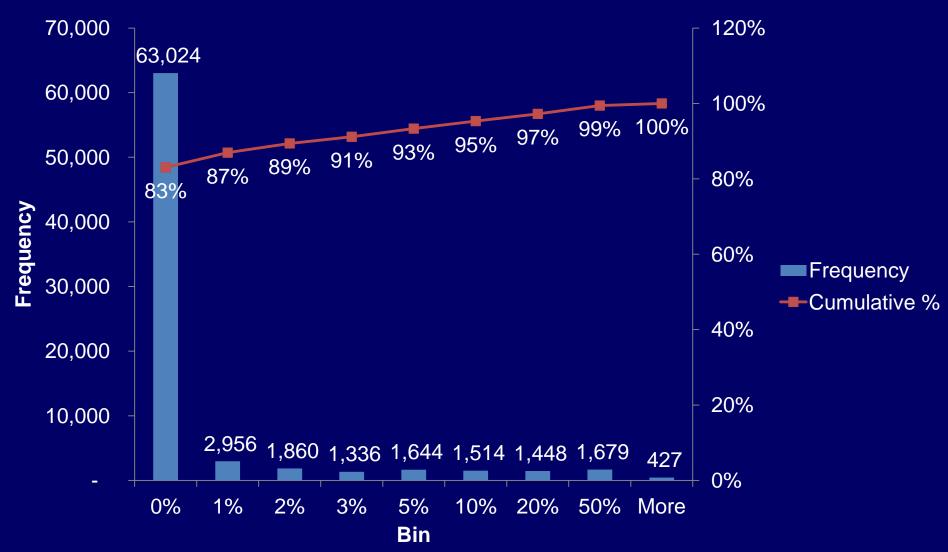
- Three levels of increasing and decreasing BMPs (0, 50, 100%)
- Five levels of nutrient management (0, 50, 75, 90, 100%)
- Nine levels of land use change to determine the ratio of manure to manure receiving land uses (0, 5, 10,15, 20, 25, 30, 35, 40%) simulated with tree planting on agricultural land

1,000s of Different Regression Equations

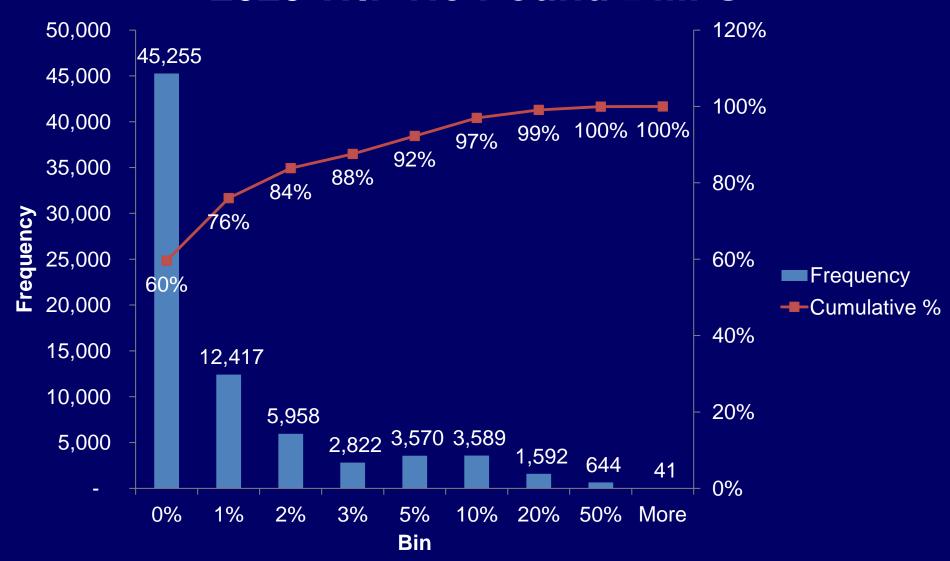
-Vary by County, Pollutant, and Land Use


- Terms:
 - Intercept
 - Stored
 - MLUF
 - NMFraction
 - Stored*MLUF
 - Stored*NMFraction
 - MLUF*NMFraction
 - NMFraction*NMFraction
 - MLUF*MLUF

- Direct
- Direct*MLUF
- Direct*NMFraction
- NMFrac*NMFrac*NMFrac
- MLUF*MLUF*NMFraction
- MLUF*NMFrac*NMFrac
- MLUF*MLUF*NMFrac*NMFrac


- Generalized equation: WSM Load (Lb/A) ~ Intercept + (Direct deposit (lbs) * regression coefficient for direct) +
- Definitions:
 - Stored Amount of stored manure
 - MLUF amount of manure / acres of manure receiving land uses
 - NMFraction fraction of nutrient management on manure receiving land uses
 - Direct Amount of direct deposit manure

INITIAL VALIDATION RESULTS


TN Percent Difference 2025 WIP No Pound BMPs

TP Percent Difference 2025 WIP No Pound BMPs

TSS Percent Difference 2025 WIP No Pound BMPs

Remaining Work on Agreement with WSM

 Address the BMP reduction for hydrology (generally 1-2%, could be as much as 9% on a per acre basis)

Add in pound BMP correction

- Program into CAST
 - Include a message for Irseg and land uses where agreement is not within 5% of WSM

Initial Design of Cost Functionality

- Incorporate annualized unit cost of practices (\$/acre/year) into CAST
 - Default costs for each BMP will be the EPA estimates for WIP BMPs
 - Users will be able to specify their own cost
 - Types of cost for each BMP include the following where applicable
 - Capital
 - Operations
 - Maintenance
 - Opportunity
 - Annualization is likely to be zero
 - Users will be able to save multiple versions of costs
 - Available on the Summary Results, Compare Scenarios, and in the BMP file that the user may download

Trainings

CAST and VAST training focused on urban applications

Date: Tuesday, September 10, 2013

Time: 1:00 to 3:00 pm.

URL: https://epa.connectsolutions.com/cast_mast_vast_training/

Telephone conference line: (866) 299-3188, Participant Code- 2679856222

MAST training focused on urban applications

Date: Wednesday, September 11, 2013

Time: 1:00 to 3:00 pm.

URL: https://epa.connectsolutions.com/cast_mast_vast_training/

Telephone conference line: (866) 299-3188, Participant Code-2675715

CAST, MAST, and VAST training focused on agricultural applications

Date: Thursday, September 12, 2013

Time: 1:00 to 3:00 pm.

URL: https://epa.connectsolutions.com/cast_mast_vast_training/

Telephone conference line: (866) 299-3188, Participant Code- 2679856222

Please note that the URL is the same for all of the trainings, but the conference line changes.

Conclusion

- CAST is a reasonable approximation of the Watershed Model's N, P, and sediment loads
 - Available to the public for free
 - Online, no need to download special software
- Local jurisdictions learned that
 - pollutant loads are more sensitive to some BMPs than others
 - runoff and the resulting pollutant loads depend on the location of BMPs
- Users are learning to be selective about which BMPs they implement and where they
 are located to more effectively reduce loads.
- Using multiple models strengthens all models. Comparisons between MAST/CAST/VAST and Scenario Builder/Watershed Model led to changes to Scenario Builder and/or the Watershed Model

The Watershed Model determines if jurisdictions are meeting loads; CAST is a reasonable approximation for planning and engagement of local jurisdictions.

QUESTIONS?

We encourage you to test the tools at:

www.casttool.org

www.vasttool.org

www.mastonline.org