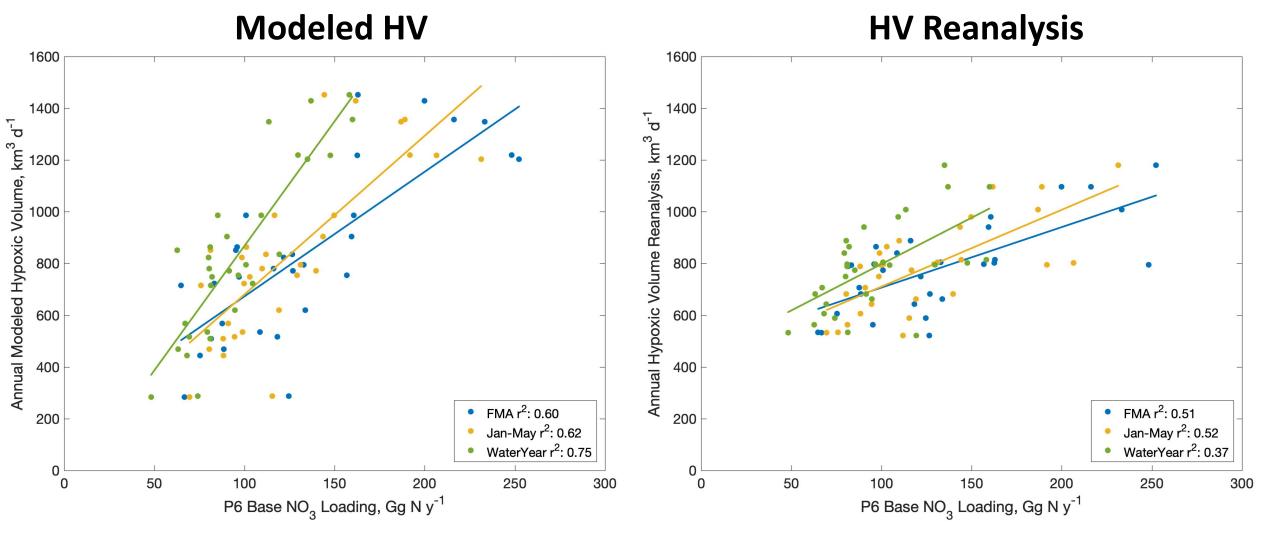

Assessing Best Predictors of Hypoxic Volume

Kyle Hinson and Marjy Friedrichs
February 15, 2019

Predictors of Annual Hypoxic Volume

• Is the change in FMA precipitation the best choice when assessing the sensitivity of hypoxia to future climate scenarios?

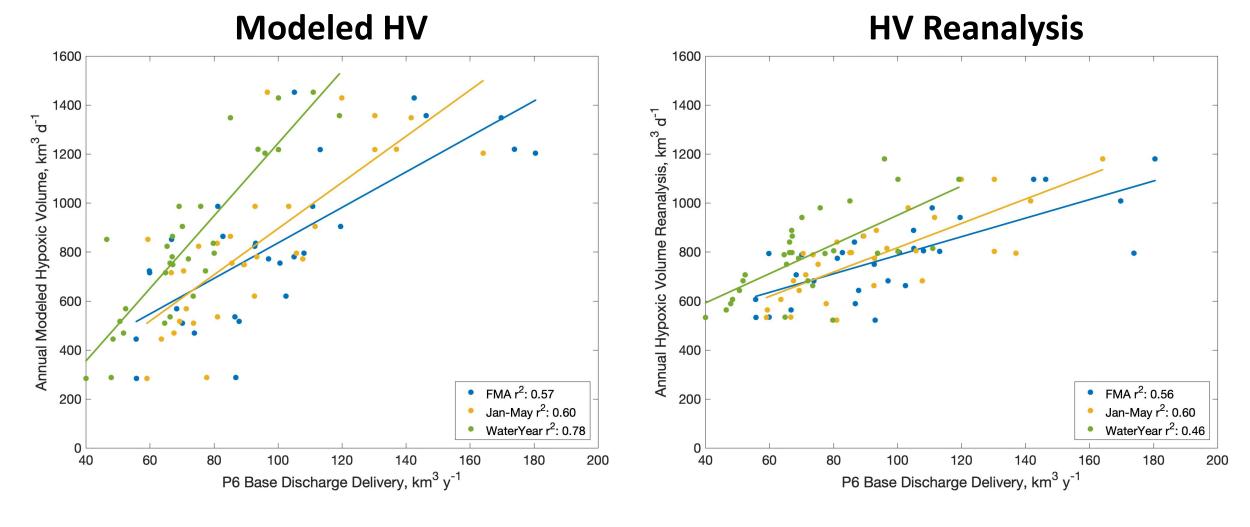
Delta Distribution: 2025 minus 1995


Nutrient loading and meteorological conditions explain interannual variability of hypoxia in Chesapeake Bay

Yuntao Zhou,^{1,2,*} Donald Scavia,^{2,3,4} and Anna M. Michalak ¹


"Overall, total April—May precipitation (P, mm), cumulative January—May TN loading (N, 106 kg) from the Susquehanna, Potomac, and Rappahannock, and the April—August dominant wind effect (W, i.e., SW wind duration/NE wind duration) were selected by BIC for the final model, and together explained 85% of the variability in the mean hypoxic volume..."

Approach Taken


- Compute Correlations between reanalysis/modeled HV and:
 - NO₃ Loading, Total Nitrogen, Discharge, and Precipitation
 - TN Results similar to NO₃ Loading, not shown
- Examine these correlations over different spatial regions
 - Whole Bay, Zhou & Scavia's three rivers
 - Three river results similar to Whole Bay, not shown
 - Examine different temporal periods (Feb-Apr, Jan-May, etc.)

Higher correlation to modeled hypoxic volume than reanalysis of annual hypoxic volume

- Higher correlation to modeled hypoxic volume than reanalysis of annual hypoxic volume
- Correlations are less similar for DLEM NO₃ Loading than P6 NO₃ Loading

 Correlations for both relationships are more similar for discharge than they were for NO₃ Loading

Predictor	N	IO3 - Modeled H	V	N	O3 - HV Reanalys	sis
Correlation Period	FMA	Jan-May	Water Year	FMA	Jan-May	Water Year
P6 HV	0.60	0.62	0.75	0.51	0.52	0.37
DLEM HV	0.56	0.64	0.83	0.32	0.33	0.37
Predictor	Disc	Discharge - Modeled HV		Discharge - HV Reanalysis		
Correlation Period	FMA	Jan-May	Water Year	FMA	Jan-May	Water Year
P6 HV	0.57	0.60	0.78	0.56	0.60	0.46
DLEM HV	0.48	0.58	0.58	0.44	0.45	0.37
Predictor	Precipitation - Modeled HV		Precipitation - HV Reanalysis			
Correlation Period	FMA	Jan-May	Water Year	FMA	Jan-May	Water Year
P6 HV	0.47	0.49	0.63	0.48	0.54	0.39
DLEM HV	0.45	0.56	0.48			

• Annual HV is more correlated to Jan-May Precipitation than Feb-April precipitation

How many ways can you skin a cat precipitation dataset?

 Better estimates of fit can be found for time periods different from current "FMA" selection

Time Period	P6 HV	DLEM HV	HV Reanalysis
Feb-Apr	0.47	0.45	0.48
Feb-May	0.51	0.50	0.47
Mar-May	0.41	0.42	0.39
Jan-Apr	0.40	0.46	0.49
Jan-May	0.49	0.56	0.54
Jan-Jun	0.41	0.55	0.51
Jan-Jul	0.47	0.58	0.46
Jan-Aug	0.55	0.52	0.44
Full Year	0.43	0.28	0.27
Water Year	0.63	0.48	0.39

Currently being

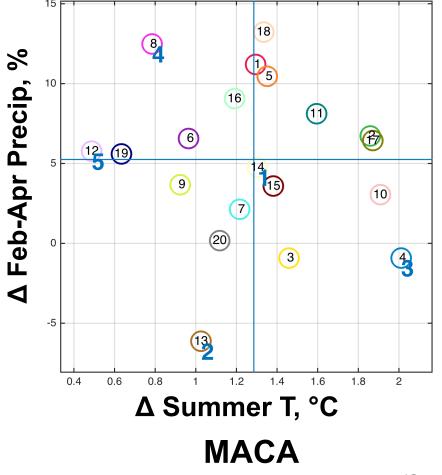
Correlation of Aggregated Precipitation to Estimates of Annual Hypoxic Volume **HV Estimate** 0.9 P6 WSM HV **DLEM HV** 0.8 **HV Reanalysis** Precip-Annual HV, r² Coefficient Zhou et al., best predictor 0.2 time period for TN loading 0.1 Jan-Feb Jan-Mar Jan-Apr Jan-May Jan-Jun Jan-Jul Jan-Aug Jan-Sep Jan-Oct Jan-Nov FY Time Period of Aggregation for Precipitation

Best time period for aggregated precipitation and <u>all</u> estimates of hypoxic volume is Jan-May

Correlation of Aggregated Precipitation to Estimates of Annual Hypoxic Volume **HV Estimate** 0.9 P6 WSM HV **DLEM HV** 0.8 **HV Reanalysis** Precip-Annual HV, r² Coefficient 0.2 0.1 Jul-Jun Aug-Jun Sep-Jun Oct-Jun Nov-Jun Dec-Jun Jan-Jun Feb-Jun Mar-Jun Apr-Jun May-Jun Time Period of Aggregation for Precipitation

 Peak in goodness of fit for Nov to June, diminishing returns as more months are added (moving left)

Correlation of Aggregated Precipitation to Estimates of Annual Hypoxic Volume **HV Estimate** 0.9 P6 WSM HV **DLEM HV** 0.8 **HV Reanalysis** Precip-Annual HV, r² Coefficient Zhou et al., 0.2 best predictive time period for 0.1 precipitation Jun-May Jul-May Aug-May Sep-May Oct-May Nov-May Dec-May Jan-May Feb-May Mar-May Apr-May Time Period of Aggregation for Precipitation


 Peak in goodness of fit for late fall to May, diminishing returns as more months are added (moving left)

Conclusions

 In selecting a downscaled GCM representing the center of a distribution for precipitation, the time period of Feb-Apr may not be the best choice

 Switch from using Feb-April precipitation to Nov-June precipitation when selecting downscaled GCMs

Delta Distribution: 2025 minus 1995

