Tillage Panel

Recommendations for High Residue Minimum Soil Disturbance (HRMSD)

November 6, 2014

Phosphorus

APEL Runs

STP

% change CT to NT

Coasta	al Plain	Piedmont		Ridge ar	nd Valley	Plateau	
Н	VH	Н	VH	Н	VH	Н	VH
-48%	108%	-56%	-16%	-57%	-16%	-60%	-31%

Major impact of STP and of soil loss / slope

Phosphorus Literature

_		Subsurface			
		Particulate P	Dissolved P	Р	Total P
Citation	Location		% change Conser	vation-T to NT	
Benham, 2007	Ridge and Valley				-23%
Verbree, 2010	Ridge and Valley	-73%	333%		-5%
Kleinman 2002	PA				147%
	Wisconsin (silt				
Andraski, 1985	loam)		57%		-15%
Bundy, 2001	no manure		-60%		-35%
Wisconsin (silt loam					
soils (2))	with manure		0%		-80%
	Woodson sl,				
	Ottawa KS 1.5%				
Kimmelll et al.,	slope				-56%
Kleinman, 2009	PA Plateau	5%	80%	71%	10%
	Nebraska, 2 and				
Quincke 2007	3% slope	14%	0%		9%
Sharpley 1991	OK, TX				-32%
Staver, 2004	Coastal Plain	-65%	421%		238%
Ross, et al , 2001	Coastal Plain				-87%
			Median, all		
			sites		-19%

Phosphorus

Recommendation:

Coastal Plain: 5.0% of TP - No Manure fraction

Uplands: 10.0% of TP - No Manure fraction

- No P reduction credited on land receiving manures
- Conservative reductions on the remainder due to uncertainty
- Application of reduction efficiencies will be based on the fraction of manured acres in each county (USDA Census of Agriculture)

Nitrogen

% change Conserv-Till to HRMSD (NT)

		70 Sharige Sonserv Till to Tilting (141)					
	Literature Citation	Nitrate	Ammonium	Organic	TN	Location	
	Menelik, G., R. Reneau, D. Martens, T. Simpson, G. Hawkins. 1990. Effects of tillage and nitrogen fertilization on nitrogen losses from soil used for corn. VPT-VWRRC-Bul 167. Virginia Tech, Blacksburg, VA.				-19%	Virginia, Ridge and Valley and Coastal Plain	
	Shipitalo et al. 2013. Effect of No-Till and Extended Rotation on Nutrient Losses in Surface Runoff.						
	Soil Sci. Soc. Am. J. 77:1329–1337	-20%)		0%	Ohio, silt loam soils	
	McDowell, L. L.; McGregor, K. C. Nitrogen and phosphorus losses in runoff from no-till soybeans. Transactions of the ASAE 1980 Vol. 23 No. 3 pp. 643-648				-90%	Loess soils in MS	
	Eghball and Gilley. 1999. Phosphorus and nitrogen in runoff following beef cattle manurer compact application. JEO 28:1201-1210.				240/	Nebraska, Sharpsburg	
	or compost application. JEQ 28:1201-1210 Tolbert et al. 1995. Management effects on				-24%	silty clay loam	
	nitrogen and phosphorus losses on expansive clay soils				-74%	Texas	

Nitrogen

Recommendation:

Coastal Plain: 2.25% of TN

Uplands: 5.25% of TN

- Represents a conservative overall reduction of 15%
- Not applicable to the proportion of N moving via subsurface pathways, HGMR ground water partitioning coefficients applied to N reductions applied to the estimated 15% decrease in surface losses. Efficiency adjusted based on HGMR ground water partitioning -15% * 0.15 for Coastal Plain and 15% * 0.35 for Uplands
- Application of reduction efficiencies will be based on the fraction of manured acres in each county (USDA Census of Agriculture)

Panel Propose	d HRMSD BMP

Total N

Uplands

 $\label{eq:high-Residue Minimum Soil-Disturbance} \\ \text{Low-Till} \rightarrow \text{HRMSD (Stackable)}$

Load Reduction Efficiency above CT

5.25% No Manure Fraction*

0.00% Manure Fraction

Total P

Uplands

High-Residue Minimum Soil-Disturbance

Low-Till → HRMSD (Stackable)

Load Reduction Efficiency above CT

10.0% No Manure Fraction

0.00% Manure Fraction

TSS

Uplands

High-Residue Minimum Soil-Disturbance

Low-Till → HRMSD (Stackable)

Load Reduction Efficiency above CT

64.0% No Manure and Manure Fraction

Total N

Coastal Plain

High-Residue Minimum Soil-Disturbance

Low-Till → HRMSD (Stackable)

Load Reduction Efficiency above CT

2.25% No Manure Fraction*

0.00% Manure Fraction

Total P

Coastal Plain

High-Residue Minimum Soil-Disturbance

Low-Till → HRMSD (Stackable)

Load Reduction Efficiency above CT

5.0% No Manure Fraction

0.00% Manure Fraction

TSS

Coastal Plain

High-Residue Minimum Soil-Disturbance

Low-Till → HRMSD (Stackable)

Load Reduction Efficiency above CT

64.0% No Manure and Manure Fraction

Panelist Comment

A panelist suggested application of HGMR ground water coefficient to modeled nitrate fraction of TN instead of applying it to overall TN

Apply the USGS-based coefficient for surface and subsurface water flow partitioning to only the nitrate portion (model assumes that 53.05% of TN is nitrate) and credit the full 15% reduction to the remainder of the TN (46.95%)

As an example, here is how this would be calculated for upland areas: $(15\% \times 0.5305) = 7.96\%$ then $(7.96\% \times 0.35) = 2.785\%$ reduction for nitrate. Plus $(15\% \times 0.4695) = 7.04\%$ reduction for organic and ammonia fractions for a total of 9.83%

The recommendation would be for reductions from TN of 8.23% in the Coastal Plain and 9.83% in the other HGMR's on non-manured acres.