

Alternative Crediting Methodology for Impervious Area Disconnections to Amended Soils - Maryland

Stewart R. Comstock, P.E.
Senior Regulatory & Compliance Engineer
Sediment, Stormwater, and Dam Safety Program

Timeline of Events

- Draft Expert Panel Report Distributed for Comments (5/16/16)
- MDE Submits Initial Comments (6/20/16)
- MDE & Expert Panel Members Discuss Comments (7/12/16)
- USWG July Meeting (7/26/16) Includes Distribution of Comments
- MDE Initiates Independent Peer Review (8/1/16)
- MDE Submits MD's Crediting Methodology to USWG (9/9/16)
- USWG September Meeting (9/20/16)

MDE's Comments (June 20, 2016)

- MDE submitted comments on the draft report "Recommendations of the Expert Panel to Define Removal Rates for Disconnecting Existing Impervious Area Runoff From Stormwater Management Systems"
- MDE expressed concern that several of the conditions expressed in the report were less stringent than existing requirements found in the 2000 Maryland Stormwater Design Manual.
- MDE also commented that the proposed methods (see Sections 4 & 5)
 rely on the relationship between soil properties (e.g., saturated hydraulic
 conductivity or "Ksat") and NRCS runoff curve numbers (RCNs).
 Specifically, MDE expressed concern that there is no established
 relationship between Ksat and RCNs.
- To resolve this issue, MDE suggested that the report be reviewed by several known experts on RCN methods. MDE later petitioned several experts for their comments (8/20/16)

- The proposed methods (Sections 4 & 5) are less stringent than existing requirements found in the 2000 Maryland Stormwater Design Manual.
- MDE's alternative for Maryland is based on the Disconnection of Rooftop and Non-Rooftop Runoff Techniques described in Chapter 5 of the Design Manual.
- This is permitted by language added to the current report:
 - "The statements and procedures outlined in this Expert Panel Report are intended to supplement existing jurisdictional requirements.
 Nothing in the Expert Panel Report shall affect jurisdictional regulatory and other legal requirements." – added at request of PA DEP.

- Maryland's NPDES Phase I MS4 Permits:
 - PART IV.E.2.a requires that restoration plans be "...based upon the treatment of the WQ_v criteria and associated list of practices defined in the [Design Manual]."
- Disconnection of Rooftop and Non-Rooftop Runoff Techniques (N-1 & N-2), 2000 Maryland Stormwater Design Manual (the "Design Manual", MDE, 2000 & 2009)

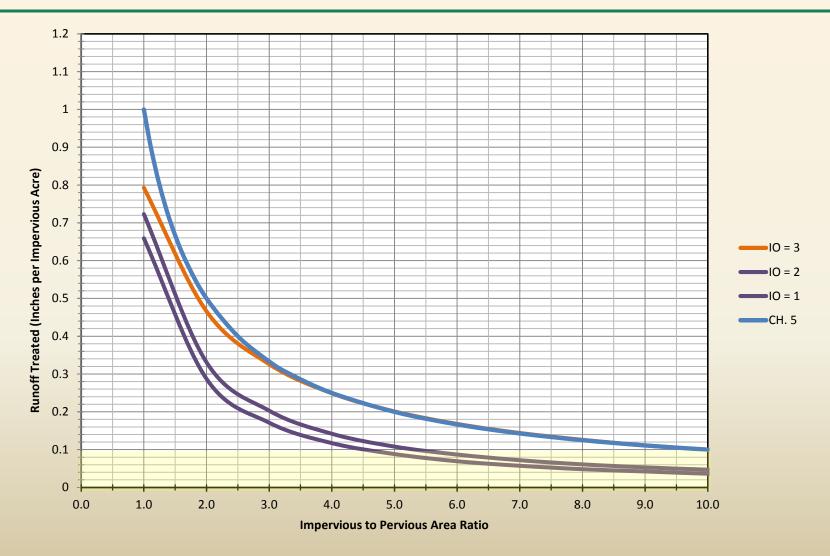
- Disconnection Non-Rooftop Runoff (N-2)
 - The disconnection through vegetated areas shall be at least 10 feet and shall not exceed 75 feet.
 - The maximum contributing impervious flow path shall be
 75 feet.
 - Runoff reduction for disconnections ranges from 0.1 inch to 1.0 inches.
 - Disconnections should be directed over HSG A,B, or C soils. HSG D and compacted soils may need to be tilled and/or amended to increase permeability.

N.2 – Disconnection of Non-Rooftop Runoff

2000 Maryland Stormwater Design Manual Vol. 1, Chapter 5 (p. 5.62)

Ratio of Impervious to Pervious Area (I _a :1)												
I _a :P _a	P_{E}	TSS	TP	TN								
10.00	0.10	15.6%	14.6%	12.3%								
9.00	0.11	17.2%	16.1%	13.6%								
8.00	0.13	19.3%	18.0%	15.2%								
7.00	0.14	21.7%	20.3%	17.3%								
6.00	0.17	24.9%	23.3%	19.9%								
5.00	0.20	29.1%	27.2%	23.3%								
4.00	0.25	34.9%	32.6%	27.9%								
3.33	0.30	40.1%	37.4%	32.1%								
3.00	0.33	43.3%	40.4%	34.6%								
2.50	0.40	48.9%	45.7%	39.2%								
2.00	0.50	56.0%	52.3%	44.8%								
1.67	0.60	61.7%	57.5%	49.3%								
1.43	0.70	66.2%	61.7%	52.9%								
1.25	0.80	69.7%	65.1%	55.7%								
1.11	0.90	72.6%	67.8%	57.9%								
1.00	1.00	74.9%	69.9%	59.8%								
0.5	1.25	79.0%	73.7%	63.0%								
Note: values shown in italics are interpolated												

Table 9. from Section 5.1.2 (see P. 26)


Table 9. Water treated (in) per impervious acre based on initial soil conditions and organic matter content. Water treated is a representation of runoff reduction.

	Initial Organic Matter = 1.0		Initial Organic Matter = 2.0		Initial Organic Matter = 3.0				
I:P*	Loose	Medium	Tight	Loose	Medium	Tight	Loose	Medium	Tight
15	0.022	0.005	0.002	0.029	0.004	0.002	0.066	0.008	0.002
14	0.024	0.005	0.002	0.032	0.004	0.002	0.071	0.009	0.002
13	0.026	0.006	0.002	0.034	0.005	0.002	0.077	0.010	0.002
12	0.029	0.007	0.003	0.038	0.005	0.003	0.083	0.011	0.003
11	0.032	0.008	0.003	0.042	0.006	0.003	0.091	0.013	0.003
10	0.036	0.009	0.003	0.047	0.007	0.003	0.100	0.014	0.003
9	0.042	0.011	0.003	0.053	0.008	0.003	0.111	0.017	0.003
8	0.048	0.013	0.004	0.061	0.009	0.004	0.126	0.020	0.004
7	0.057	0.016	0.004	0.072	0.011	0.004	0.144	0.024	0.005
6	0.069	0.021	0.005	0.087	0.014	0.005	0.168	0.030	0.007
5	0.088	0.028	0.006	0.108	0.019	0.006	0.201	0.040	0.010
4	0.117	0.041	0.007	0.142	0.029	0.007	0.249	0.056	0.017
3	0.171	0.067	0.008	0.203	0.049	0.008	0.326	0.087	0.032
2	0.287	0.134	0.010	0.331	0.100	0.010	0.466	0.161	0.072
1	0.659	0.428	0.034	0.723	0.323	0.102	0.793	0.447	0.262
0.5	1.039	0.765	0.054	1.106	0.580	0.182	1.067	0.775	0.477
0.25	1.737	1.409	0.091	1.805	1.070	0.335	1.542	1.395	0.890

^{*}I:P = Impervious to pervious area ratio

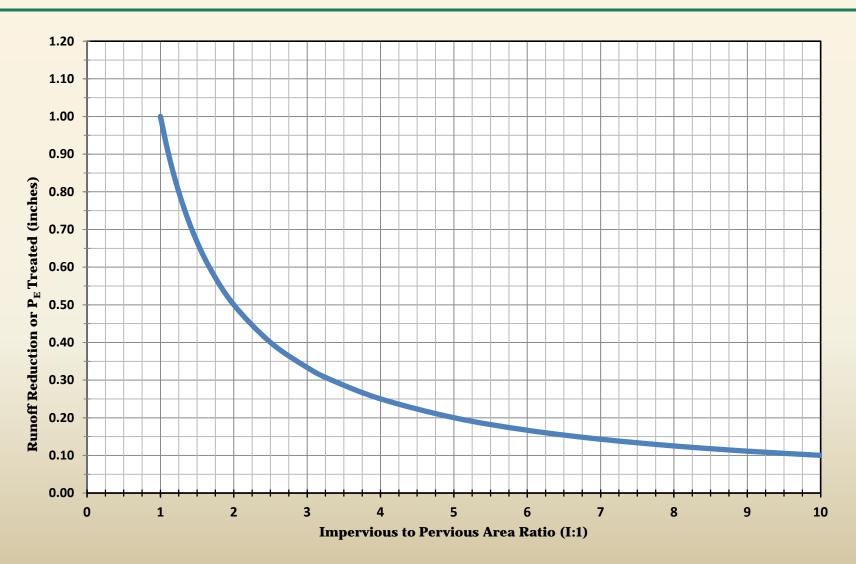

Table 9. Runoff Treated (inches/imp. acre) Based on Initial Soil Conditions & Organic Matter Content

Figure 1. Runoff Treated for Impervious Area Disconnection onto Amended Soils

(Protocol to Define Nutrient and Sediment Removal Rates ... Maryland)

- MDE formally requests that this alternative method be added as an appendix to the Expert Panel Report.
- The alternative is conservative. It also meets the requirements found in Maryland's stormwater regulations and in the current Phase I NPDES MS4 permits.
- MDE does not consider the method as an "either/or" choice as is described in the current agenda.
- MDE believes this is a reasonable request. If the proposed appendix is included in the report, MDE would be willing to allow the report to move forward.

Independent Peer Review

- MDE expressed concerns with the use of the RCN method in conjunction with Ksat.
- To determine the validity of these concerns, MDE solicited an independent peer review of the Expert Panel report.
- The opinions expressed by these reviewers supported MDE's position.
- MDE agrees to disagree with Expert Panel on this issue.

Independent Peer Reviewers

- Robert Pitt, Ph.D., P.E., BCEE, D.WRE
 Cudworth Professor of Urban Water Systems
 Dept. of Civil, Construction, and
 Environmental Engineering
 University of Alabama
- Richard McCuen, Ph.D., M.ASCE
 Professor, Ben Dyer Chair in Civil Engineering
 University of Maryland, College Park
- Robert G. Traver, Ph.D., P.E., D. WRE, F.EWRI, F.ASCE
 Edward A. Daylor Chair in Civil Engineering
 Professor, Civil and Environmental
 Engineering
 Director, Villanova Urban Stormwater
 Partnership
 Director, Villanova Center for the
 Advancement of Sustainability in Engineering
- Richard H. (Pete) Hawkins, PhD, P.E., F.ASCE, F.EWRI, Professor Emeritus
 School of Natural Resources and Environment, Watershed Resources and Ecohydrology
 Dept. of Agricultural and BioSystems
 Engineering
 Dept. of Hydrology and Water Resources
 University of Arizona
- Dr. Tim J. Ward, P.E., F.EWRI, F.ASCE
 Dean, School of Engineering
 Professor of Civil Engineering
 Manhattan College in Riverdale, The Bronx,
 New York City
- Donald E Woodward, P.E., P.H., F.ASCE
 USDA, NRCS (ret.)
 Former National Hydrologist with the USDA,
 NRCS