MANURE INJECTION/INCORPORATION EXPERT PANEL REPORT

AGRICULTURE WORKGROUP UPDATE

NOVEMBER 21, 2016

PANEL MEMBERS

Name	Affiliation	Role	
	USDA-Agriculture Research		
Curt Dell	Service	Panel Chair	
	University of Maryland –		
Art Allen	Eastern Shore	Panel Member	
	USDA-Natural Resources		
Dan Dostie	Conservation Service	Panel Member	
Robb Meinen	Penn State University	Panel Member	
Rory Maguire	Virginia Tech	Panel Member	
Chris Brosch	Delaware Department of	Watershed Technical	
	Agriculture	Workgroup representative	
		Modeling Team	
Jeff Sweeney	CBPO	representative	

Technical support provided by Mark Dubin (University of Maryland), Lindsey Gordon (CRC Staffer), and Don Meals (Tetra Tech).

Practice Categories

- Manure Injection
 - Low disturbance
 - Immediate incorporation
 - Slot closure

Practice Categories

- Incorporation: Low Disturbance
 - ≥30% residue retention (to be consistent with Conservation Tillage BMP)
 - Several tools possible, aerators and vertical tillage most likely
 - Incorporation within 24 hr of manure application for full N credit, 1-3d for a smaller credit

Practice Categories

- Manure Incorporation: High Disturbance
 - <30% residue retention</p>
 - Full width tillage
 - Incorporation within 24 hr of manure application for full N credit, 1-3d for a smaller credit

PRIMARY BENEFITS

- GREATLY REDUCES N LOST AS AMMONIA
 - REDUCED P AND N LOSSES WITH RUNOFF (BOTH DISSOLVED AND SEDIMENT BOUND P)
 - LEACHING LOSSES OF N AND P <u>NOT</u> TYPICALLY REDUCED BY INJECTION OR INCORPORATION

CONSIDERATIONS

- AMMONIA LOSS REDUCTION FACTOR SEPARATE FROM N LOADING REDUCTION FACTOR FOR WATERSHED MODEL. AMMONIA FACTOR DIRECTLY IMPACTS EMISSIONS IN AIRSHED MODEL, AND INDIRECTLY INFLUENCES N INPUTS TO WATERSHED MODEL BY INCREASING PLANT AVAILABLE N CONTENT OF MANURE AND REDUCING NEED FOR SUPPLEMENTAL INORGANIC N FERTILIZERS.
- N AND P LOSS REDUCTION FACTORS RELATIVE TO UNINCORPORATED, BROADCAST APPLICATION.
- N AND P LOSS REDUCTION FACTORS REPRESENT ONLY THE FRACTION OF TOTAL NUTRIENT LOSSES WITH SURFACE RUNOFF (NO IMPACT OF PRACTICES ON LEACHING LOSSES IS ASSUMED)

CONSIDERATIONS

- NO SEDIMENT REDUCTION FACTORS CONSIDERED (HANDLED THROUGH CONSERVATION TILLAGE PANEL)
 - FULL CREDIT FOR AMMONIA VOLATILIZATION REDUCTION REQUIRES
 MANURE INCORPORATION WITHIN 24 HR. LOWER CREDIT VALUES
 PROVIDED FOR INCORPORATION WITHIN 1-3 DAYS (CONSISTENT WITH LGU GUIDELINES FOR N CONSERVATION CREDITS).
 - INCORPORATION WITHIN 3 DAYS FOR P REDUCTION CREDIT

REGIONAL DIFFERENCES

- FACTOR) X (PORTION OF TOTAL P OR N LOSSES WITH RUNOFF)
 - TWO SETS OF P FACTORS DUE TO DIFFERENCES IN CONTRIBUTION OF RUNOFF TO TOTAL P LOSSES
 - UPLAND REGIONS (PIEDMONT, RIDGE AND VALLEY, AND ALLEGHANY PLATEAU): ASSUMING 80% OF LOSSES WITH RUNOFF
 - COASTAL PLAIN: ASSUMING 48% OF LOSSES WITH RUNOFF
 - ASSUMING 60% OF LOSSES WITH RUNOFF ON WELL DRAINED SOILS (TYPICALLY NATURALLY DRAINED) (~75% OF CROPLAND)
 - ASSUMING 10% OF LOSSES WITH RUNOFF ON POORLY DRAINED SOILS (TYPICALLY DITCH OR TILE DRAINED) (\sim 25 OF CROPLAND)
 - SINGLE N FACTOR FOR ENTIRE WATERSHED: ASSUMING 25% OF N LOSSES AS RUNOFF

REDUCTION FACTORS FOR UPLAND REGIONS

	Nitrogen			Phosphorus	
		Ammonia	Reduction		Reduction
	Time to	emission	in N	Time to	in P
Category	incorp.	reduction	loading	incorp.	loading
Injection	0	85%	12%	0	36%
Low Disturb. Incorp.	≤24 hr 24-72 hr	50% 34%	8% 8%	≤72 hr	24%
High Disturb. Incorp.	≤24 hr 24-72 hr	75% 50%	8% 8%	≤72 hr	0%1

¹12% reduction recommended by NY during public comment period

REDUCTION FACTORS FOR COASTAL PLAIN

	Nitrogen			Phosphorus	
		Ammonia	Reduction		Reduction
	Time to	emission	in N	Time to	in P
Category	incorp.	reduction	loading ¹	incorp	loading ²
Injection	0	85%	12%	0	22%
Low Disturb. Incorp.	≤24 hr 24-72 hr	50% 34%	8% 8%	≤72 hr	14%
High Disturb. Incorp.	≤24 hr 24-72 hr	75% 50%	8% 8%	≤72 hr	14%

POTENTIAL TRADEOFFS

- HIGH DISTURBANCE TILLAGE CAN INCREASE SEDIMENT LOADING
- INJECTION COULD INCREASE LEACHING WHEN TILE DRAINS OR OTHER PREFERENTIAL FLOW PATHS PRESENT
- INJECTION CAN INCREASE NITROUS OXIDE EMISSION (GREENHOUSE GAS)

DATA LIMITATIONS

- RUNOFF DATA LARGELY FROM SIMULATED RAINFALL
 - GOOD RELATIVE COMPARISON BETWEEN PRACTICES
 - INFORMATION ON TOTAL LOSSES LESS PRECISE
 - EVENT-BASED, NOT SEASONAL OR ANNUAL DATA
- EFFECTS OF PRACTICES DEPEND ON SOIL TYPES, TOPOGRAPHY,
 AND SOIL AND WEATHER CONDITION AT APPLICATION
 - ADDS VARIABILITY TO PERFORMANCE OF PRACTICES IN THE FIELD
- LEACHING STUDIES LIMITED
- MORE INFORMATION OF NEEDED ABOUT INTERACTIONS WITH OTHER MANAGEMENT PRACTICES, SUCH AS COVER CROPS

VERIFICATION AND HISTORICAL RECORDS

- VERIFICATION THROUGH NUTRIENT MANAGEMENT RECORDS
 FOR DOCUMENTATION OF INCORPORATION TIMING
- INJECTION A RECENT PRACTICE, SO HISTORICAL USE NOT A FACTOR
- TILLAGE INCORPORATION COMMON IN PAST, BUT RECORDS OF INCORPORATION TIMING UNLIKELY BEFORE NUTRIENT MANAGEMENT REQUIREMENTS

RESPONSE TO PUBLIC COMMENTS

- MOST COMMENTS JUST CALLED FOR CLARIFICATION
- 2 GROUPS PROVIDED DETAILED CONCERNS ABOUT 0% P REDUCTION CREDIT FOR HIGH DISTURBANCE INCORPORATION IN UPLAND REGIONS
 - NY PROVIDED JUSTIFICATION TO AMEND TO A 12% P
 REDUCTION CREDIT (WHICH CAN BE CONSIDERED AT DEC. 15
 AGWG MEETING)
- OTHERWISE, NO CALLS TO RECONSIDER OTHER EFFICIENCY VALUES OR PRACTICE DEFINITIONS/REQUIRES

PANEL REPORT TIMELINE

• DECEMBER 15^{TH} : AGWG/WTWG DECISIONAL MEETING

DECEMBER 19TH: WQGIT DECISIONAL MEETING PROPOSED

• DECEMBER 31 ST: RECOMMENDATIONS INCORPORATED IN

THE PHASE 6 MODELING TOOLS

