USWG CLIMATE RESILIENCY STRATEGY

MODELING WG QUARTERLY MEETING – OCTOBER 9, 2019

BACKGROUND – PSC DIRECTIVE

Update SWM Design to account for updated rainfall volume and intensity

Determine how updated designs would impact nutrient and sediment removal

Examine which BMPs are most vulnerable to changing climate

 Describe the co-benefits of designing stormwater BMPs to mitigate future climate risk

Management Objective	Design Storm	Purpose(s)	Engineering Models
Recharge	Annual rainfall depth for site	Promote infiltration & groundwater	Equation = runoff coefficients
	HSG	recharge	
Water Quality (WQv)	90% frequency hourly	BMP sizing to remove pollutants in	Simple Method, runoff capture
	rainfall event ²	urban runoff	equation or
			SWMM
Channel Protection	One-year storm event	Prevent downstream bank erosion	NRCS TR-55 and TR-20
Channel Conveyance	2 and/or 10-year storm event	Sizing of swales, channels, storm	NRCS models or SWMM
		drain pipes, and detention ponds	
Road Drainage & Culvert	10 and/or 25-year storm	Protect road infrastructure from	
Design	event	erosion	Rational method
Dam & Bridge Safety		Design of embankments, risers and	
	100-year storm event or	emergency spillways	
Floodplain Delineation	greater ³	Lateral and vertical boundaries of	
		existing and ultimate 100-yr	
		floodplain	
Stream and Floodplain		Protect roads, sewer and other public	
Hydraulics		infrastructure. Maintain stability of	TR-20,
		stream/floodplain restoration projects	1117-20,
			HEC-2, HEC-RAS
			2D and 3D models, and others

NEW USWG CLIMATE RESILIENCY STRATEGY

- I-year workplan
- 4 key "Tasks"
- Lay the Foundation for Multi-Year CBPO effort

Long-Term Goal: Deliver engineering tools and management solutions to communities so they can protect their current and future watershed restoration investments from climate change risk.

TASK I: PARTNER AND STAKEHOLDER ENGAGEMENT

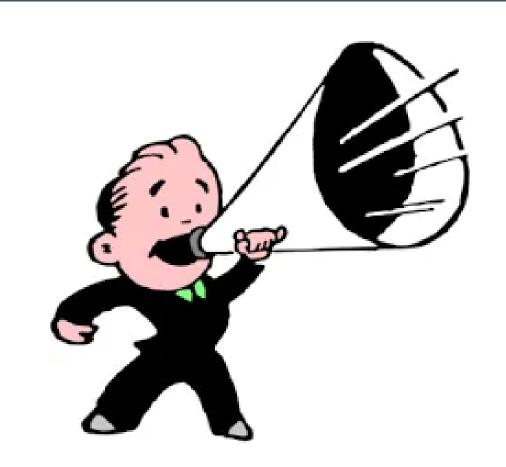
- Interview and survey key stakeholders from the following groups:
 - CBP Managers (USWG, CRWG, WQGIT, etc.)
 - Federal Agencies: (NOAA, EPA, FEMA, NRCS, COE)
 - Bay State Stormwater and Flood Control Agencies
 - Municipal Agencies
 - Researchers

TASK 2: RESEARCH AND MANAGEMENT SYNTHESIS

Summarize forecasted changes in rainfall intensity and volume

Identify existing or ongoing efforts to produce new IDF curves

Assess current stormwater engineering standards and criteria


Analyze the vulnerability of urban stormwater BMPs to reduced pollutant removal performance

TASK 3. DEVELOP LONG-TERM WORK PLAN

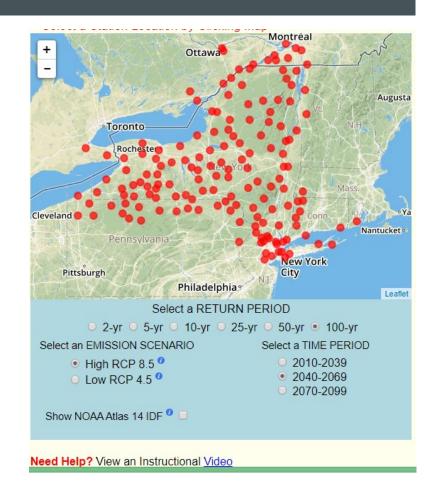
- Coordinate with key stakeholders (including other sector WGs)
- Identify priority initiatives for local stormwater BMP management
- Decide how local, regional or bay-wide modeling tools should be updated
- Discuss funding and inter-agency collaboration needs to address priority initiatives

TASK 4. OUTREACH

- Webcasts
- CSN webpage
- WG Presentations
- "Road Show"

WORK TO DATE

- Early Conversations
 - Baywide Stormwater RetreatSession
 - Meetings with Cornell, ODU,ESLC, and NYC and NYSDOT



GIT-FUNDING PROJECT

- Developing Probabilistic IDF curves for D.C. and Virginia
- I50k through CBT

Objectives:

- 1. Evaluate downscaling method climate model combinations
- 2. Downscale precipitation for future time scales and develop IDF curves
- 3. Quantify methodological and model uncertainty
- 4. Develop web-tool to make results accessible

TASK I APPROACH

- Develop two short survey instruments: "Practitioners" and "Regulators"
 - Confirm current design standards, engineering models
 - Understand current approaches to climate resilience
 - Identify initial preferences and needs

Subset of survey respondents will be contacted for follow-up discussion

UPCOMING TIMELINE

- Mid October: Surveys Released
- November-December: Follow-up discussions and summary of findings
- December Early Fall 2020: Research/Management Synthesis
- Fall 2020: Long-Term Workplan Development

QUESTIONS?

DAVID WOOD

WOOD.CSN@OUTLOOK.COM