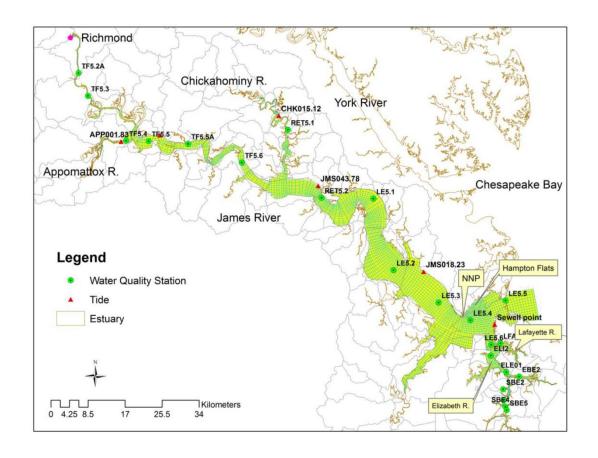

James River Chlorophyll Assessment: Proposed Changes to the Procedure and Motivation for using the 2005-2013 Period for Determining Criteria Attainability

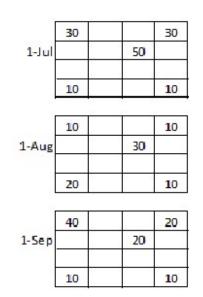

Tish Robertson
VADEQ-Office of Ecology
Modeling Workgroup Quarterly Meeting
April 10, 2018

Since the completion of the Bay TMDL, VADEQ has been reviewing the James River chlorophyll criteria and assessment method.

VADEQ has also contracted with VIMS to develop a water quality model specific to the tidal James River.

VADEQ is considering the adoption of revised criteria and a different assessment method.

The agency plans to use the VIMS water quality model to determine the attainability of both current and proposed criteria under a number of load reduction scenarios.


VADEQ will be running both assessment procedures on the VIMS model output to determine criteria attainability.

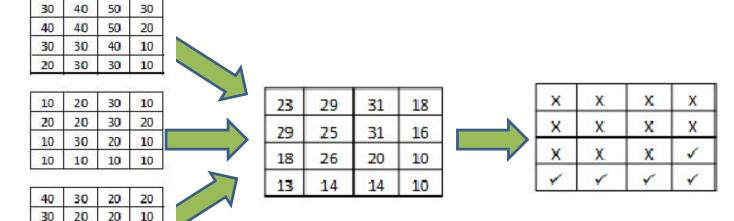

The Current Method

Table IV-2. Previously published Chesapeake Bay chlorophyll a criteria assessment methods and recommended modifications.

	U.S. EPA 2008 Addendum	U.S. EPA 2010 Addendum
1.	Chlorophyll <i>a</i> data used for scenario assessments comprise all chlorophyll a values in the CIMS water quality database with layer flagged "S" for surface.	
2.	Data are organized into individual "cruise" files for interpolation.	
3.	Individual cruise files are interpolated using the Chesapeake Bay Interpolator (version 4.61), with the "In-transform" and the "2-D Inverse-Distance Squared" options selected. <i>The Interpolator automatically back-transforms chlorophyll a values in its output files</i> .	
		Interpolated chlorophyll a surfaces are ln-transformed Seasonal means are calculated on ln-transformed chlorophyll a values.
		 Ln-transformed seasonal means are assessed (cell-by- cell) against the ln-transformed criterion for the relevant river segment-season.

Source: U.S. EPA 2008.

3. Create seasonal "snapshot"

monitoring runs

1. Conduct monthly 2. Interpolate each monitoring run using the Bay

Interpolator

20

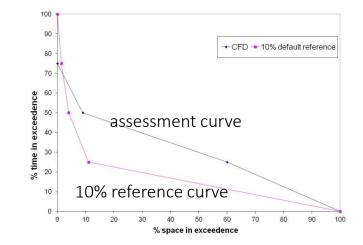
10

20

10

10

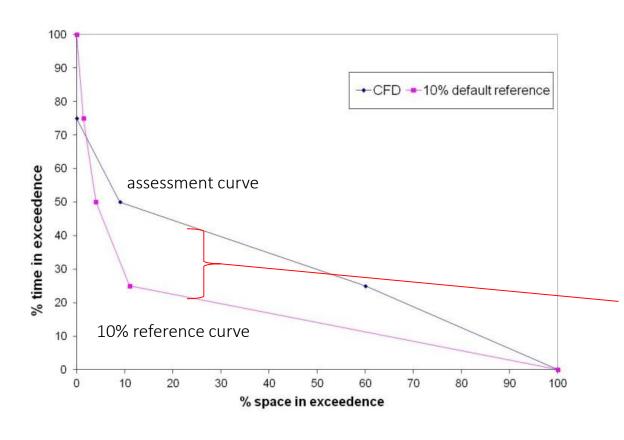
10


10

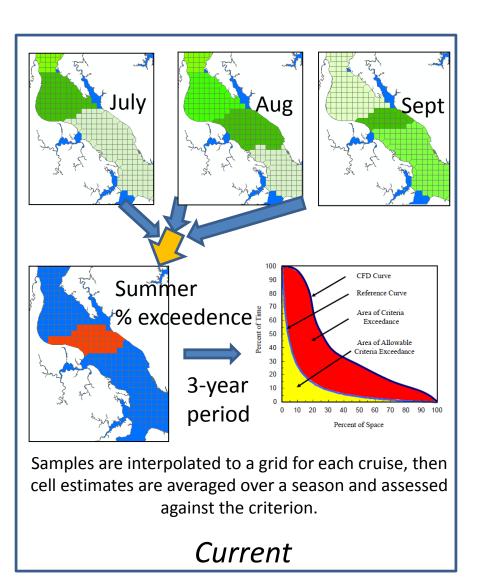
10

Perform the above steps for each season in the assessment period

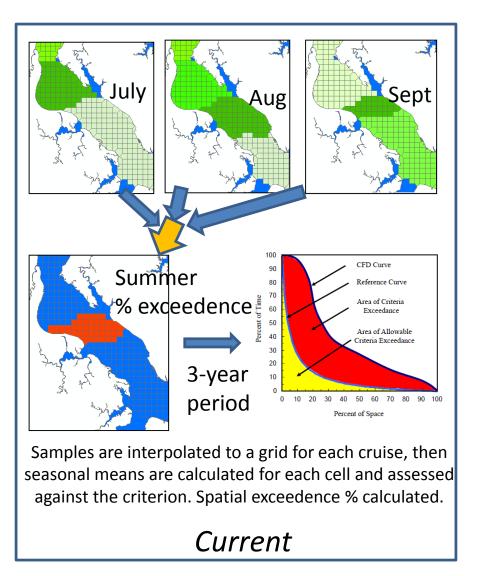
	Ranked Spatial	Temporal
	Exceedence	Exceedence
Season-Year	Rate	Rate
	100%	0%
Spring Year2	33%	25%
Spring Year1	25%	50%
Spring Year3	10%	75%
	0%	100%

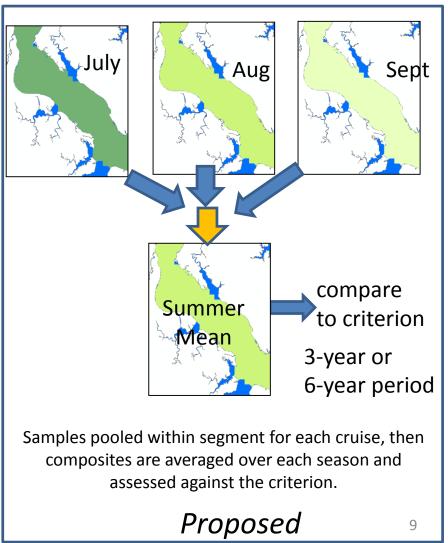

5. Rank spatial exceedence rates; assign a cumulative temporal exceedence rate based on rank

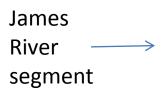
4. Calculate spatial

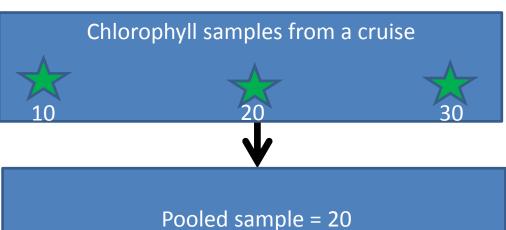

6

exceedence rate




Area between the curves = excessive space-time exceedence rate


How is the proposed assessment method different from the current one?



How is the proposed assessment method different from the current one?

Repeat for all cruises in a season-year

Calculate geometric mean of pooled samples over each season-year

single value to compare against WQS

Do the above steps for three or six years. Allowable exceedence rate = 33%

How is the proposed assessment method different from the current one?

Historical Chlorophyll	Historica	l Chloro	phyll
------------------------	-----------	----------	-------

SPF	RING				
period	JMSTFU	JMSTFL	JMSOH	JMSMH	JMSPH
91-93	0.0	0.0	0.0	29.6	19.8
92-94	0.0	0.0	0.0	5.2	5.4
93-95	0.0	5.6	0.0	0.0	5.4
94-96	0.0	5.6	9.4	6.5	21.8
95-97	0.0	19.5	20.9	13.0	21.8
96-98	0.0	11.3	24.7	13.0	21.8
97-99	0.0	30.0	25.2	7.9	0.0
98-2000	0.0	16.1	19.6	1.4	0.0
SUN	1MER				
period	JMSTFU	JMSTFL	JMSOH	JMSMH	JMSPH
91-93	22.3	53.6	0.0	0.0	0.0
92-94	21.7	52.6	0.0	0.0	0.0
93-95	17.1	36.5	0.0	0.0	3.7
94-96	1.7	12.2	0.0	0.0	6.0
95-97	16.2	21.8	0.6	3.8	6.0
96-98	27.7	37.1	0.6	3.8	0.1
97-99	29.9	41.5	0.6	24.5	21.8
98-2000	18.6	32.7	0.0	18.2	32.3

SPRING					
	INACTELL	INACTEL	INACOLL	IN ACN ALL	INACDII
Year	JMSTFU	JMSTFL	JMSOH	JMSMH	JMSPH
1991	10	12	14	17	9
1992	9	11	10	12	11
1993	3	3	3	4	13
1994	8	9	3	5	8
1995	12	12	6	7	5
1996	9	11	18	10	20
1997	13	15	15	13	9
1998	8	8	14	4	6
1999	10	17	13	12	9
2000	8	12	12	6	7
SUMMER					
Year	JMSTFU	JMSTFL	JMSOH	JMSMH	JMSPH
1991	21	26	14	5	7
1992	24	27	16	6	8
1993	41	48	13	7	7
1994	20	24	10	3	7
1995	13	11	5	4	9
1996	7	8	6	5	12
1330	-				
1997	53	58	15	10	8
	53 30	58 31	15 10	10 6	8 9
1997					

Excessive space-time exceedence rates (%)

Seasonal chlorophyll geometric means (ug/L) Exceedences of current criteria

11

Current Proposed

VADEQ is also proposing alternative criteria to go along with the alternative assessment method.

Segment-Season	Current criteria	Recommended
JMSTFU-spring	10	8
JMSTFU-summer	15	21
JMSTFL-spring	15	10
JMSTFL-summer	23	24
JMSOH-spring	15	13
JMSOH-summer	22	11
JMSMH-spring	12	7
JMSMH-summer	10	7
JMSPH-spring	12	8
JMSPH-summer	10	7

Preliminary Chlorophyll Criteria Attainment Results of the CBPO Ranging Scenarios

Scenario Descriptions

All scenarios assume 1991-2000 average hydrology

- <u>2010 No Action Scenario</u>: 2010 land uses, animal numbers, atmospheric deposition, and point source loads but with NO CONTROLS on loading.
- <u>1985 Progress Scenario</u>: 1985 land uses, animal numbers, atmospheric deposition, point source loads, and pollution controls.
- <u>1993 Progress Scenario</u>: 1993 land uses, animal numbers, atmospheric deposition, point source loads, and pollution controls.
- <u>2013 Progress Scenario</u>: 2013 land uses, animal numbers, atmospheric deposition, point source loads, and pollution controls.
- WIP2 Scenario: estimated 2010 land uses, animal numbers, atmospheric deposition, point source loads, and 2025 pollution controls.
- <u>E3 (Everyone, Everything, Everywhere) Scenario</u>: Management actions applied to the fullest possible extent on 2010 land uses, animal numbers, atmospheric depo, and point sources.

Attainment of Current Criteria using Current Assessment Procedure

2013 Progress

WIP2

E3

SPF	RING					SPI	RING					SPF	RING				
period	JMSTFU	JMSTFL	JMSOH	JMSMH	JMSPH	period	JMSTFU	JMSTFL	JMSOH	JMSMH	JMSPH	period	JMSTFU	JMSTFL	JMSOH	JMSMH	JMSPH
91-93	0.0	0.0	0.0	0.0	2.8	91-93	0.0	0.0	0.0	0.0	0.0	91-93	0.0	0.0	0.0	0.0	0.0
92-94	0.0	0.0	0.0	0.0	2.8	92-94	0.0	0.0	0.0	0.0	0.0	92-94	0.0	0.0	0.0	0.0	0.0
93-95	0.0	0.0	0.0	0.0	2.8	93-95	0.0	0.0	0.0	0.0	0.0	93-95	0.0	0.0	0.0	0.0	0.0
94-96	0.0	0.0	0.0	0.0	21.8	94-96	0.0	0.0	0.0	0.0	21.8	94-96	0.0	0.0	0.0	0.0	0.0
95-97	0.0	0.0	0.0	0.5	21.8	95-97	0.0	0.0	0.0	0.0	21.8	95-97	0.0	0.0	0.0	0.0	0.0
96-98	0.0	0.0	0.0	0.5	21.8	96-98	0.0	0.0	0.0	0.0	21.8	96-98	0.0	0.0	0.0	0.0	0.0
97-99	0.0	0.0	0.0	0.0	0.0	97-99	0.0	0.0	0.0	0.0	0.0	97-99	0.0	0.0	0.0	0.0	0.0
98-2000	0.0	0.0	2.5	0.0	0.0	98-2000	0.0	0.0	1.9	0.0	0.0	98-2000	0.0	0.0	0.0	0.0	0.0
SUN	1MER					SUN	/IMER					SUN	/IMER				
period	JMSTFU	JMSTFL	JMSOH	JMSMH	JMSPH	period	JMSTFU	JMSTFL	JMSOH	JMSMH	JMSPH	period	JMSTFU	JMSTFL	JMSOH	JMSMH	JMSPH
91-93	0.0	34.2	0.0	0.0	0.0	91-93	0.0	29.4	0.0	0.0	0.0	91-93	0.0	9.0	0.0	0.0	0.0
92-94	0.0	33.2	0.0	0.0	0.0	92-94	0.0	27.5	0.0	0.0	0.0	92-94	0.0	9.0	0.0	0.0	0.0
93-95	0.0	20.0	0.0	0.0	0.0	93-95	0.0	16.0	0.0	0.0	0.0	93-95	0.0	9.0	0.0	0.0	0.0
94-96	0.0	2.0	0.0	0.0	0.0	94-96	0.0	0.0	0.0	0.0	0.0	94-96	0.0	0.0	0.0	0.0	0.0
95-97	2.0	21.8	0.0	0.0	0.0	95-97	1.2	21.8	0.0	0.0	0.0	95-97	0.0	17.1	0.0	0.0	0.0
96-98	5.2	35.5	0.0	0.0	0.0	96-98	2.0	35.5	0.0	0.0	0.0	96-98	0.0	21.8	0.0	0.0	0.0
97-99	5.3	35.5	0.0	1.5	18.3	97-99	2.0	35.5	0.0	0.0	13.1	97-99	0.0	21.8	0.0	0.0	8.8
98-2000	5.4	25.1	0.0	1.5	26.3	98-2000	2.0	25.0	0.0	0.0	17.2	98-2000	0.0	2.0	0.0	0.0	8.8

Values are excessive space-time exceedence rates%.

Red values indicate periods with non-attainment of the current criteria.

The VIMS model does not predict full attainment of the current criteria under the E3 scenario.

Exceedences of Proposed Criteria using Proposed Assessment Procedure

2013 Progress

WIP2

E3

SPRING	2013 Prog	gress Scen	ario			
Year	JMSTFU	JMSTFL	JMSOH	JMSMH	JMSPH	
1991	4	6	7	14	8	1 [
1992	4	5	5	9	8	
1993	2	2	2	3	11	
1994	4	6	3	3	6	
1995	7	6	5	7	5	
1996	3	4	8	7	17	
1997	7	10	10	10	8	
1998	5	6	11	3	5	
1999	5	9	8	10	7	
2000	4	7	13	4	6	
SUMMER	2013 Prog	gress Scen	ario			
SUMMER Year	2013 Prog JMSTFU	gress Scena JMSTFL	ario JMSOH	JMSMH	JMSPH	
				JMSMH 3	JMSPH 5	
Year	JMSTFU	JMSTFL	JMSOH			
Year 1991	JMSTFU 14	JMSTFL 18	JMSOH 7	3	5	
Year 1991 1992	JMSTFU 14 17	JMSTFL 18 19	JMSOH 7 8	3 4	5 6	
Year 1991 1992 1993	JMSTFU 14 17 26	JMSTFL 18 19 32	JMSOH 7 8 8	3 4 5	5 6 6	
Year 1991 1992 1993 1994	14 17 26 14	18 19 32 16	7 8 8 6	3 4 5 2	5 6 6 7	
Year 1991 1992 1993 1994 1995	14 17 26 14 7	18 19 32 16 6	7 8 8 6 3	3 4 5 2 2	5 6 6 7 7	
Year 1991 1992 1993 1994 1995 1996	14 17 26 14 7 4	18 19 32 16 6 5	7 8 8 6 3 4	3 4 5 2 2 3	5 6 6 7 7 10	
Year 1991 1992 1993 1994 1995 1996 1997	14 17 26 14 7 4 31	18 19 32 16 6 5 39	7 8 8 6 3 4 10	3 4 5 2 2 3 7	5 6 6 7 7 10 7	

			•	• • • •		
SPRING	WI	P2 Sce	enario			
Year	JM	ISTFU	JMSTFL	JMSOH	JMSMH	JMSPH
1991		4	6	7	12	7
1992		4	5	4	9	7
1993		1	2	2	2	10
1994		11	5	2	3	5
1995		6	5	4	5	4
1996		2	4	8	6	14
1997		6	8	9	8	7
1998		5	5	9	3	6
1999		4	8	8	9	5
2000		4	7	12	3	5
SUMMER	WI	P2 Sce	enario			
Year	JM	ISTFU	JMSTFL	JMSOH	JMSMH	JMSPH
1991		13	17	8	2	5
1992	l .	15	18	8	3	5
1993		25	31	7	4	5
1994		11	14	5	1	6
1995		6	6	3	2	6
1996		3	4	3	3	9
1997		34	41	9	5	6
1998		22	24	6	4	7
1999	'	10	13	11	7	14
2000		19	24	7	3	8

SPRING	E3 Scenar	rio				
Year	JMSTFU	JMSTFL	JMSOH	JMSMH	JMSPH	
1991	2	5	4	9	6	
1992	2	2	2	6	6	
1993	1	1	1	2	8	
1994	2	2	1	2	4	
1995	3	2	4	5	4	
1996	2	2	4	4	11	
1997	3	4	6	6	6	
1998	3	4	6	2	5	
1999	2	4	3	6	5	
2000	2	3	9	3	4	
SUMMER	E3 Scenar	rio				
Year	JMSTFU	JMSTFL	JMSOH	JMSMH	JMSPH	
1991	7	10	7	2	4	
1992	11	13	5	2	4	
1993	16	19	4	2	4	
1994	7	9	3	1	5	

Values are season-year chlorophyll means.

Red values are exceedences of the proposed segment-season criteria.

1999

2000

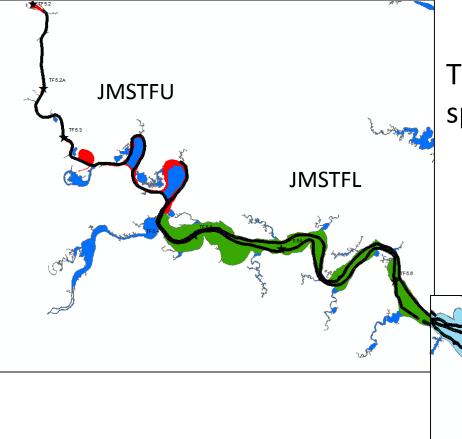
14 5

11

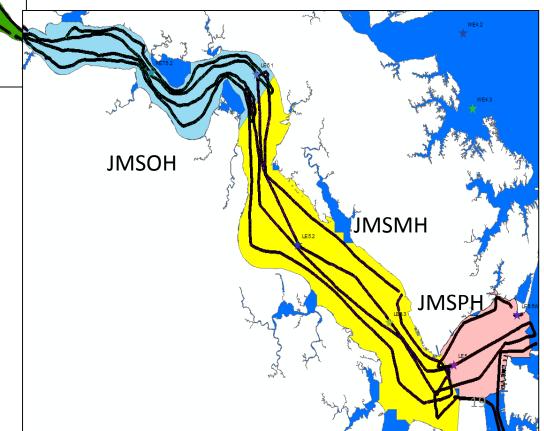
15

Red boxes are 6-year periods with criteria non-attainment.

The VIMS model predicts full attainment only under the E3 scenario.



12

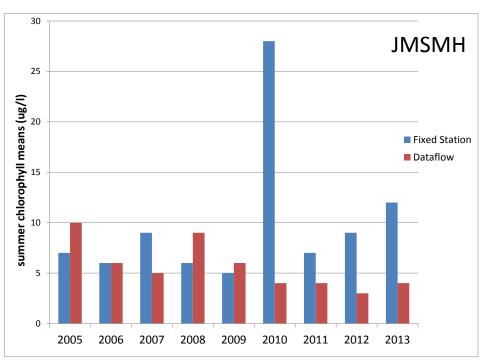

VADEQ would like to determine the attainability of the criteria by scenario-modifying observations from 2005-2013 instead of those from 1991-2000.

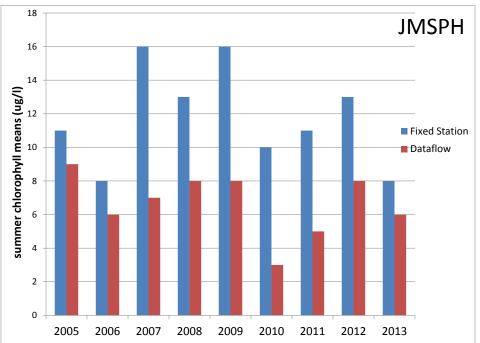
VADEQ analyzed 2005-2015 monitoring data to estimate the long-term central tendency of chlorophyll in each segment/season and used this information (along with other info) to derive alternative criteria.

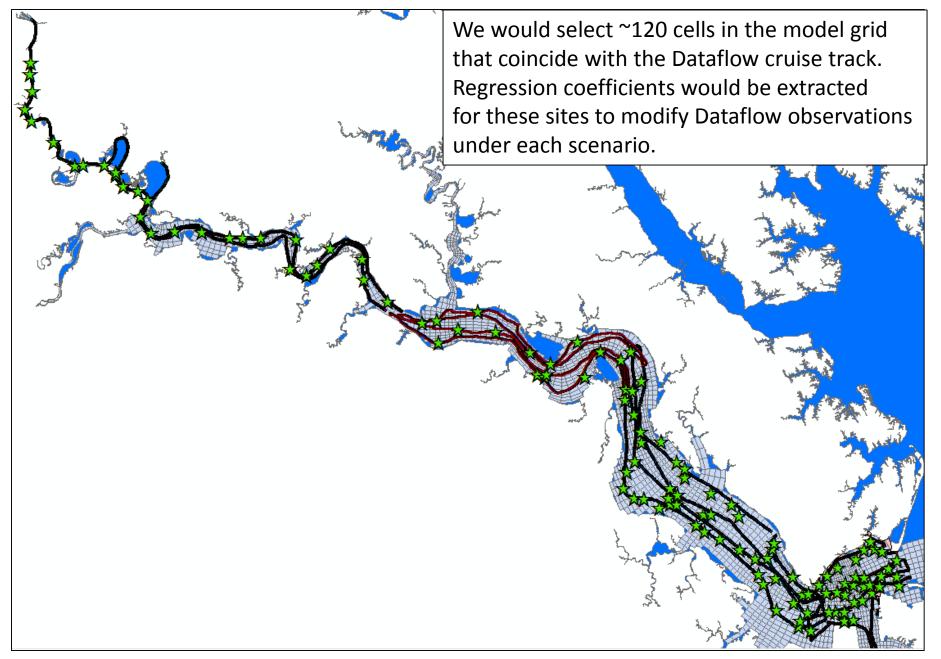
So we view the 2005-2015 period as the new "baseline period".

The 2005-2015 datasets are quite spatially and temporally intensive.

Geometric means derived from 2005-2015 monitoring datasets

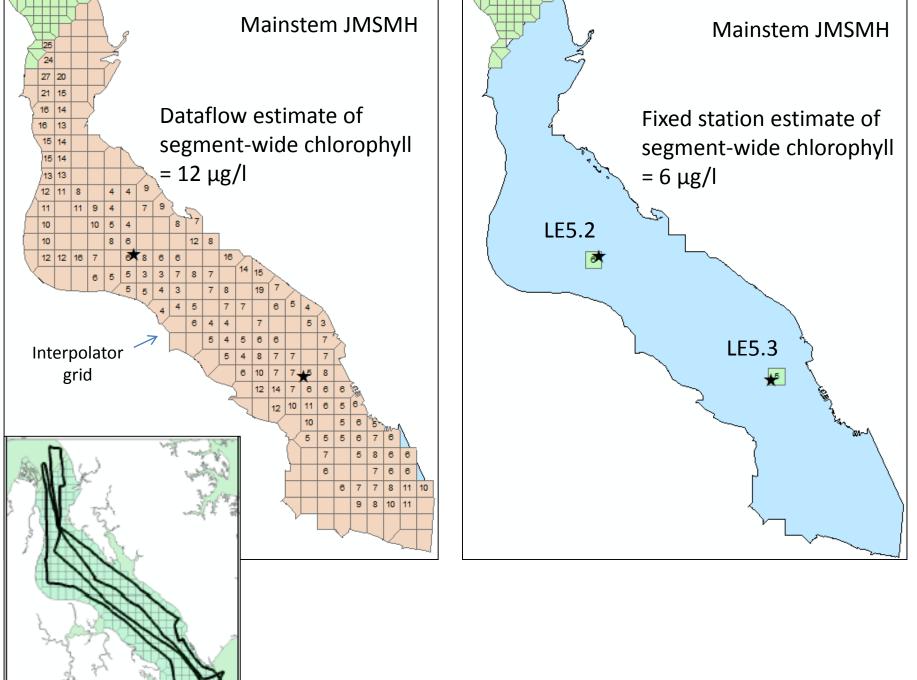

Segment-Season	Current criteria	Recommended	Basis for recommended criteria lower than baseline	Baseline
JMSTFU-spring	10	8		8
JMSTFU-summer	15	21	Enhanced protection from elevated pH	23
JMSTFL-spring	15	10		10
JMSTFL-summer	23	24	Enhanced protection from elevated pH and harmful algal blooms	28
JMSOH-spring	15	13		13
JMSOH-summer	22	11		11
JMSMH-spring	12	7		7
JMSMH-summer	10	7		7
JMSPH-spring	12	8		8
JMSPH-summer	10	7	Enhanced protection from harmful algal blooms	8


Justification for scenario-modifying more recent data:


- The 2005-2013 monitoring data were used to derive the proposed criteria— most of which are developed to maintain *current* chlorophyll concentrations. The 1991-2000 monitoring data do not reflect current chlorophyll concentrations.
- The 2005-2013 monitoring datasets are much more refined than the 1991-2000 datasets. The former would be better indicators of "attainability" than the latter.

Dataflow-derived estimates of chlorophyll expression tend to be lower than CBP fixed station estimates.

Because the proposed criteria are derived from these lower estimates, we feel it is important that attainability be determined from the same source of data.



VADEQ needs the 2005-2013 scenario loadings estimated by the Bay Watershed Model.

Questions?

