Optimization of WWTPs

Jim Kern
Office of Infrastructure & Assistance
Water Protection Division
EPA Region 3

1

Purpose of Optimization

- Improve effluent quality
- Minimize costs of operations
- Alternatives to capital upgrades

Involves all aspects of a WWTPs life

- Operations & Maintenance
 - Improve performance of unit processes
 - Fine tune a process control strategy
- Energy Use
 - · Aeration & Digestion
 - Pumping
- Increase level of treatment
 - To achieve permit compliance
 - Add nutrient removal

3

Range of potential improvements

- Process Control
 - Get the plant back into compliance
 - Improve sludge wasting #1 issue
- Improve Performance limited nutrient removal
 - Aeration control
 - MCRT / F:M / Sludge Age
 - · Re- location of chemical addition

Range of potential improvements, con't

- Going beyond initial design (limited applications)
 - Improving nitrification (E.g., alkalinity limited, aeration control)
 - Generally adding denitrification (E.g., on/off aeration, anoxic zone)
 - Energy improvements (E.g., too much air)
- Available tankage loss of future capacity
 - Aeration tank ORP studies
 - Clarifier dye studies
 - Detention time calculations

Enhanced Nutrient Removal

• Generally, this is outside the scope of optimization.

Operator Training Required

- Most optimization projects fail due to a lack of training operators to maintain new processes.
- Requires basic training on new processes.
- Needs to develop a new process control strategy based on the facility.
- Several weeks of follow-up to insure correct decisions are made.

7

Best Candidates for Optimization

- Extended aeration activated sludge to BNR levels.
- When actual flows are significantly less than design.
- Potential exists to add new zones to aeration tanks.
- Aeration systems are generally over designed.
- Sufficient nutrients in the influent.

Nitrogen Removal – good potential

- Requirements to remove ammonia is generally well known.
- Going next step to remove total nitrogen is not well understood by the operators.

9

Phosphorus

- Chemical addition has been around for a long time and the principles are understood by the operators
- Fine tuning chemical addition is an art.
- Biological removal is not well understood by the operators.
 - I.e., VFA's role, required ORP/O₂ levels,
- Side-stream impacts makes things complicated.
 - Aerobic digestions shut off to decant, release P
 - Anaerobic digestions release P

My Approach to Optimization – 4C's

Based on the principles of first-aid!

10

My Approach to Optimization – 4C's

- Check the scene
 - · Plant tour
 - · Discussion with operator
 - Process Control Strategy & testing
 - · How they calculate their WAS
 - Aeration
 - RAS control
 - Chemical Addition
 - Review Actual vs. Design conditions

My Approach to Optimization – 4C's

- Check the scene
- Check the victim
 - Do you have the operator's buy-in?
 - This is critical to the success of optimization
 - West Goshen great potential / rejected assistance
 - Morrisville Delayed acceptance / limited results
 - Montrose Cautious acceptance / well within new CB permit
 - Bryn Athyn Enthusiastic acceptance / DIY upgrade for nutrient removal

1

My Approach to Optimization – 4C's

- Check the scene
- Check the victim
- Call 911
 - Bring in experts as needed.

My Approach to Optimization – 4C's

- Check the scene
- Check the victim
- Call 911
- Care for the conditions you find
 - Identify performance limiting factors
 - Prepare a report
 - Include a training plan

15

West Goshen

Primary Tanks

17

Trickling Filters – one abandoned

Aeration tanks + chemical feed

Anaerobic Digesters

Concept was to re-purpose existing tanks

- Reuse tankage
 - Primary becomes anaerobic zone
 - Trickling Filters (1) anoxic, (2) oxic
 - Old digesters for side stream treatment
- Add another chemical addition location

2:

Morrisville

- Process Control implementation.
- Wasting based on MCRT.
- Identified needed metering.
- PaDEP involvement.

Pottstown

- On/Off Aeration
- Establishes an anoxic zone
- Total N removal
- Saves energy
- Saves chemicals

Bryn Athyn

- Needed to meet a new Total Nitrogen limit of 10 mg/L.
- Plant is a small extended aeration facility.
- Actual flows is about half of the design with very low influent BOD.
- Past technical assistance shut off one of the two aeration tanks.
- New superintendent asked for help!

Re-claim "un-used" part of aeration tank

Central Delaware County Authority

- Three new municipalities joined the Authority
- 70 year old force main (24") needs to be replaced with a 30" diameter pipe.
- Pump Station upgrade from 4 100 HP motors to 4 – 200 HP motors.
- Energy Team analyzed the their current and potential energy costs.

Central Delaware County Authority

- Proposed going with a 36" force main and reducing motors to 150 HP.
- Authority Engineer determined this would meet design requirements.
- Force Main costs an extra \$200,000 more to build.
- Return on Investment in 12 years.

27

Questions?

Jim Kern

kern.jim@epa.gov

215-814-5788