

Filter Feeder Options for the Chesapeake Bay

April 6, 2010

Bay Filter Feeders

Menhaden Population

- ▶ The population of menhaden in the Chesapeake Bay is unknown, making modeling difficult.
- ▶ There is currently an annual harvest cap (109,020 metric tons) on menhaden in to allow more time for stock assessment (cap recently extended to 2013)
 - Purse seine reduction fishery is only in VA
 - MD fishery is much smaller

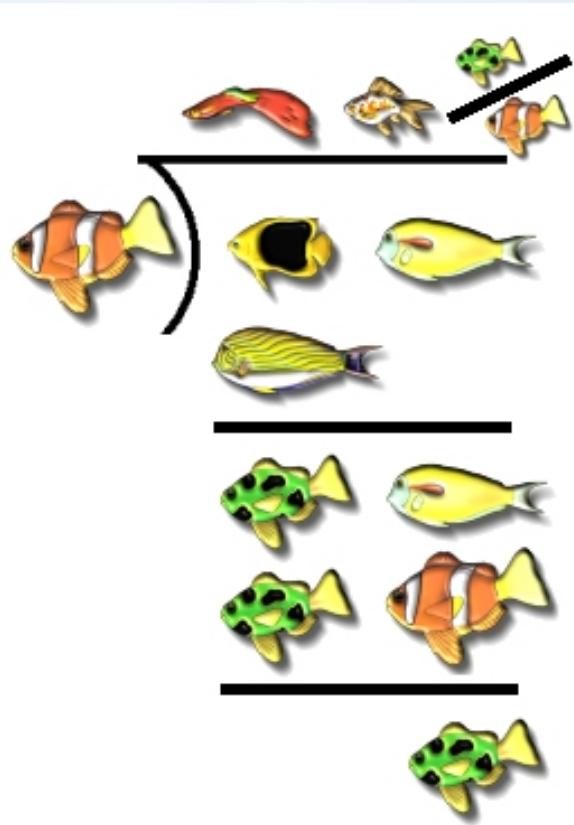
Menhaden Nutrient Assimilation

- ▶ Brush et al. (2009) from VIMS have assessed the nutrient assimilation capacity of menhaden
 - Adult menhaden are “unlikely to significantly impact phytoplankton biomass and production on a bay-wide basis”
 - Juvenile impacts would be “small at best” even assuming the entire coast-wide population of juveniles were in the Bay
 - estimates using entire population result in consumption of 5% of summer biomass and 20% of fall biomass
 - Juveniles could have some localized impacts in tributaries or bay segments or within a menhaden school

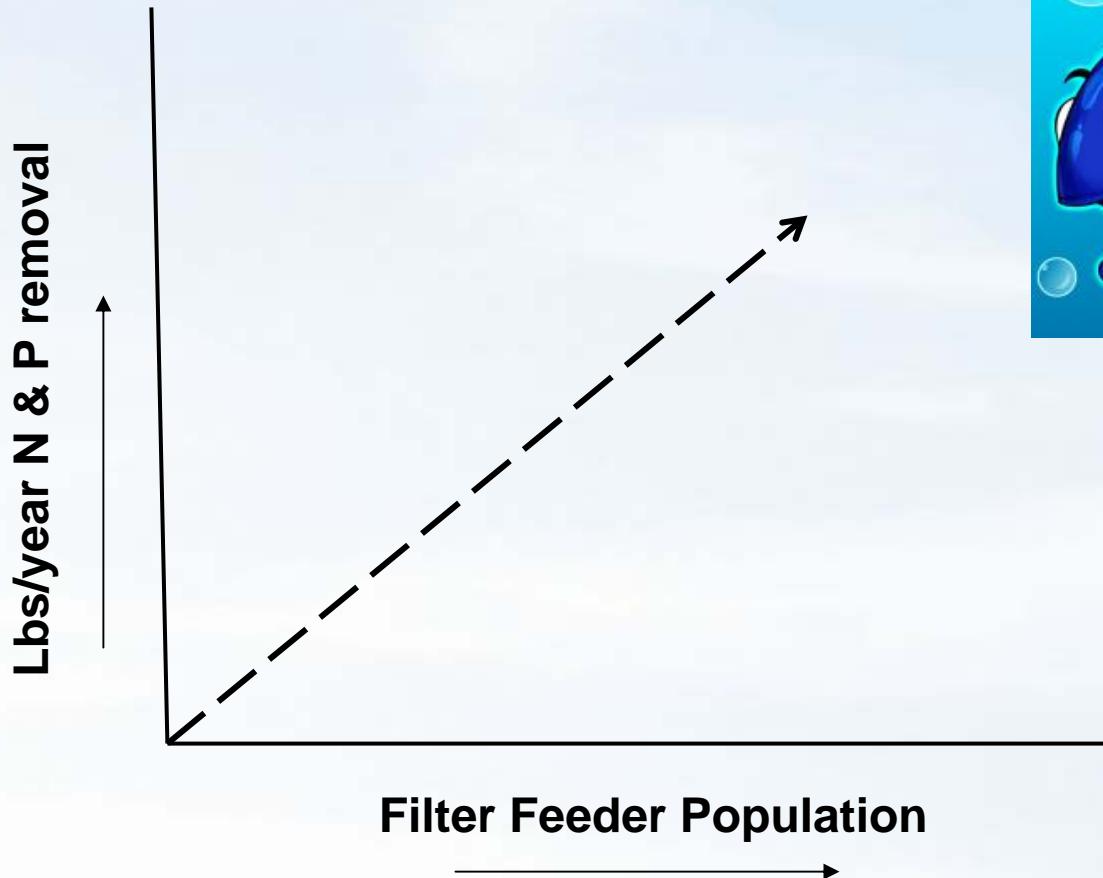
Oyster Nutrient Assimilation

- ▶ Stephenson (2008) estimates between 700 and 5,550 pounds of TN are removed annually per 1,000,000 market-sized oysters
- ▶ This is a wide range of biomass needed for offsets
- ▶ The cost of TN reduction via nutrient assimilation varies between \$0 and \$100/pound. In comparison agricultural BMPs in VA range from \$4-\$200/pound, with urban stormwater BMPs being much more expensive (Stephenson 2009).

Oyster Restoration & Preservation


- ▶ Expanded sanctuaries are already planned by the VA Oyster Restoration Plan and MD Priority Reserve Areas.
- ▶ 2009 Maryland Oyster Restoration and Aquaculture Development Plan will expand sanctuary area from 9% to 24% of remaining quality habitat (36,000 acres)
- ▶ 2009 MD Oyster Restoration and Aquaculture Development Plan outlines 600,000 acres newly available for bottom leasing, including 95,524 acres of natural oyster bars that were formerly off limits.
- ▶ Also developing Aquaculture Enterprise Zones – areas pre-approved for leasing.

Oyster Challenges


- ▶ Disease mortality and reduced fecundity are major inhibitors to population expansion
- ▶ Older oysters have slower metabolism and reduced nutrient assimilation
- ▶ Oyster Aquaculture is limited by the supply of disease resistant seed oysters
- ▶ Seed oysters are limited by cost-effective market production

Accounting for Filter Feeders

- ▶ TMDL will be based on current assimilative capacity
- ▶ TMDL does not account for future population changes

Hypothetical Nutrient Removal Efficiency

Proposal for Addressing Filter Feeders

- ▶ Assume current assimilative capacity will continue
- ▶ If future monitoring shows increases in filter feeder population then 2-year milestone delivered reductions will be adjusted accordingly
- ▶ Adjusted loads will be compared to the 2 year milestone commitments

Crediting Filter Feeder Benefits

- ▶ Options
 - State responsible for filter feeder increase benefits
 - Distribute nutrient reduction evenly across States and DC
- ▶ Benefits of filter feeders varies based on monitoring
- ▶ Filter Feeder management should be addressed in WIP for MD and VA

Other Issues

- ▶ Nutrient Assimilation in the Bay does not reduce nutrients at their source
- ▶ Over-reliance on nutrient assimilation at the Bay may make meeting upstream in-stream water quality targets difficult
- ▶ Some regulators consider nutrient assimilation an “in-stream” treatment, which is not allowed in lieu of advanced wastewater treatment
- ▶ Need to consider confidence in population permanence, reliability and be verifiable to track and report milestones