Summary of Comments Received on Stream Restoration Expert Panel Report and Proposed Options for Resolving Them

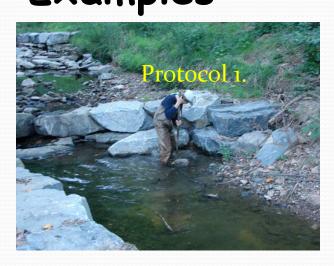
Urban Stream Restoration Expert Panel

March 4, 2013

Tom Schueler, Chesapeake Stormwater Network Bill Stack, Center for Watershed Protection

Summary of Stream Restoration Credits for Individual Restoration Projects 1, 2

1	Vo	Name	Units	Pollutants	Method	Reduction Rate	
1		Prevented	Pounds	Sediment	Define Bank	Measured N/P	
		Sediment (S)	Per Year	TN,TP	Erosion Using	Content in Stream	
					BANCS or other	Sediment	
2	2	Instream	Pounds	TN	Define	Measured Unit Stream	
		Denitrification	Per Year		Hyporheic	Denit Rate	
		(B)			Box for Reach		
3		Floodplain	Pounds	Sediment	Apply wetland	Measured Removal	
		Reconnection	Per Year	TN,TP	efficiency curves	Rates for Floodplain	
		(S and or B)			to runoff volume	Wetland Restoration	
					accessing flood	Projects	
					plain	,	
	4	Dry Channel	Removal	Sediment	Determine	Use Adjustor Curves	
		RSC as a	Rate	TN,TP	Stormwater	from Retrofit Expert	
		Retrofit (S/B)			Treatment	Panel	
					Volume		


¹ Depending on project design, more than one protocol may be applied to each project, and the load reductions are additive.

² Sediment load reductions are further reduced by a sediment delivery factor in the CBWM (which is not used in local sediment TMDLs)

S: applies to stormflow conditions

B: applies to base flow or dry weather conditions

Stream Restoration Protocols and Design Examples

1. Prevented sediment approach

3. Flood plain reconnection

2. In-stream denitrification

4. Dry Channel RSC

Issues with Protocol 1, Prevented Sediment Approach

Issues

- Limited studies in Bay Watershed
- Does not account for incision, over predicts consolidated sediments, rating curve only available for Coastal Plain, other issues
- Concern over the 50% reduction efficiency for floodplain reconnection projects

- The report thoroughly documents issues and studies that show how to improve accuracy of BANCS
- Allow states to use monitoring data or alternatives comparable to BANCS
- 50% efficiency was chosen to account for uncertainty
- Will work with USFWF and MSRA to improve accuracy
- Convene a workshop next fall to review legacy sediment data, modify Protocols as deemed appropriate

Issues with Protocol 2, Hyporheic Box Method

Issues

- Limited studies in Bay Watershed
- Does not account for hyporheic exchange in flood plain, palustrine wetlands
- Doesn't account for confined layers in channel bed or shallow bedrock
- Could lead to overly wide channels prone to sediment deposition

- Best science available.
 Reserachers. Kaushal and Meyer)believe conservative denitrification rates.
- Modify report to account for confined layers and bedrock.
- Allow credit for hyporheic exchange in floodplain for qualifying projects
- Verification process will prevent bad designs

Issues with Protocol 3, Floodplain Reconnection Method

Issues

- Jordan study (2010) for CBP not appropriate
- Doesn't account for hyporheic exchange during base flow
- Design examples biased towards Natural Channel Design method
- Concern over use of 1% floodplain area to watershed ratio

- Jordan study most accurate available and only part of methodology
- Credit for base flow load will be allowed for qualifying projects
- Design examples are urban.
 Add language to address bias concern
- Some credit given for projects that cannot meet 1% ratio.

General comments.

Issues

- Concerns over sediment transport, deposition, methods don't account for physiographic differences
- Non-urban streams are not adequately addressed.
- Watershed model scale metrics shouldn't be used for site level planning/design

- Will work w/ Modeling Team to improve how streams are modeled in Phase 6
- Add additional language to the revised draft to better account for non-urban streams
- Need tool that translates individual projects to Watershed Model. Phase 6 hopefully will make more accurate

Design Examples

- Protocol 1. Bay City, VA is planning on restoring 7,759 feet of Hickey Run using NCD approach w/ watershed DA= 1100 acres.
- Protocol 2. Credit for In-Stream and Riparian Nutrient Processing within the Hyporheic Zone during base flow for 500 feet of the channel w/ BH ratio of 1.0 on only one side of the channel.
- Protocol 3. Credit for Floodplain Reconnection with 23 acre feet of floodplain storage w/o hyporheic connectivity

Design Examples Summary

Table 7. Edge-of-Stream load reductions for various treatment options (lb/year)											
TN	Total Watershed Loading ¹ 12,896	Protocol 1 (BANCS) ² 1,754	Protocol 2 (Hyporehic Box) ³	Protocol 3 (Floodplain Reconnection) ⁴ 220	Total Load Reduction ⁵ 2,155	Interim Rate ⁶					
TP	1,382	810		50	860	528					
TSS ⁷	642,226	236,000		18,600	254,600	420,926					

¹ Edge of stream loadings calculated from Table 6, assuming watershed area of 1102 acres and 41% impervious cover

² For the design conditions as outlined in protocol 1 example

³ For the design conditions as outlined in protocol 2 example

 $^{^{4}\,}$ For the design conditions as outlined in protocol 3 example

⁵ Assuming the all three protocols are applied to the same project

⁶ Applying the unit rate to 7,759 linear feet of the project

⁷ For Protocol 1 and interim methods for TSS reductions, a sediment delivery ratio of 0.175 was applied.