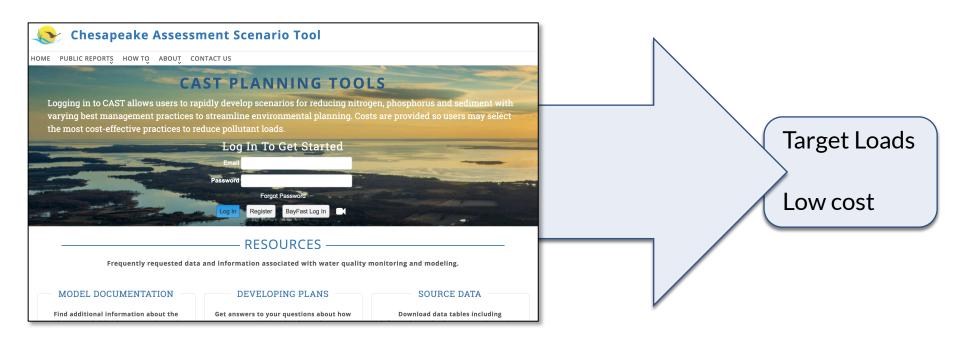
Scenario Optimization Tool for CAST

11 April 2018


Daniel Kaufman

Development

Medium-term products

Development

Medium-term products

Chesapeake Assessment Scenario Tool (CAST) estimates nitrogen, phosphorous, and sediment load impacts and the financial costs of implementing best management practices (BMPs).

Chesapeake Assessment Scenario Tool (CAST) estimates nitrogen, phosphorous, and sediment load impacts and the financial costs of implementing best management practices (BMPs).

There is a large number of decision variables, non-linear cascading effects of Best Management Practices (BMPs), and it takes time to become an expert user of the system.

There is a large number of decision variables, non-linear cascading effects of Best Management Practices (BMPs), and it takes time to become an expert user of the system.

Build a module into the system that provides guidance:

Analyze the space of potential management scenarios and identify low-cost BMP implementation options

Optimization Model Description

Objective:

(Primary) Minimize the total annual costs of BMP implementation (includes capital, installation, opportunity, maintenance)
(Secondary) Maximize co-benefits

Optimization Model Description

Objective:

(Primary) Minimize the total annual costs of BMP implementation (includes capital, installation, opportunity, maintenance)
(Secondary) Maximize co-benefits

Decision Variables:

- Number of acres (or other unit) of each BMP in each land-use category and land river segment (continuous)
- Tons of manure transported

Optimization Model Description

Objective:

(Primary) Minimize the total annual costs of BMP implementation (includes capital, installation, opportunity, maintenance)
(Secondary) Maximize co-benefits

Decision Variables:

- Number of acres (or other unit) of each BMP in each land-use category and land river segment (continuous)
- Tons of manure transported

Basic Constraints:

- Scale/region of scenario (and/or agencies)
- Nitrogen and Phosphorous simulated load reductions ≥ reduction targets
- BMP'd acres ≤ available acres (by segment and land-use)
 - BMP'd roads ≤ available miles
 - BMP'd shorelines ≤ available miles
 - BMP'd animals ≤ available animal counts

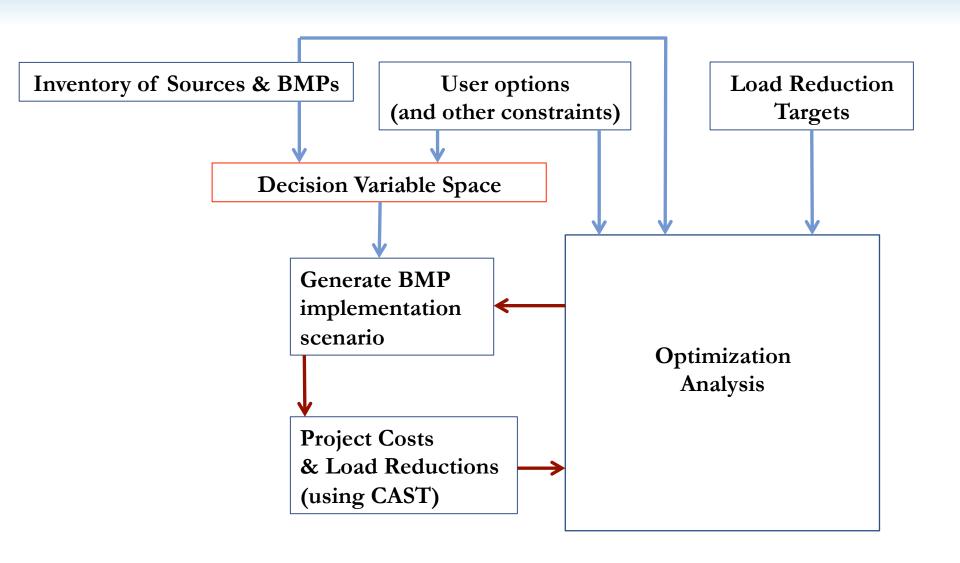
Other Constraints:

- BMP constraints, for example:
 - agricultural land retirement ≤ X acres
 - cover crop oats ≥ X % of agricultural acres
 - Land use restrictions for certain BMPs
- Capital limitations for certain sectors?

Development

Medium-term products

Development


OptSandbox

(tool to investigate space of possible scenarios and topology of solutions)

v0.1

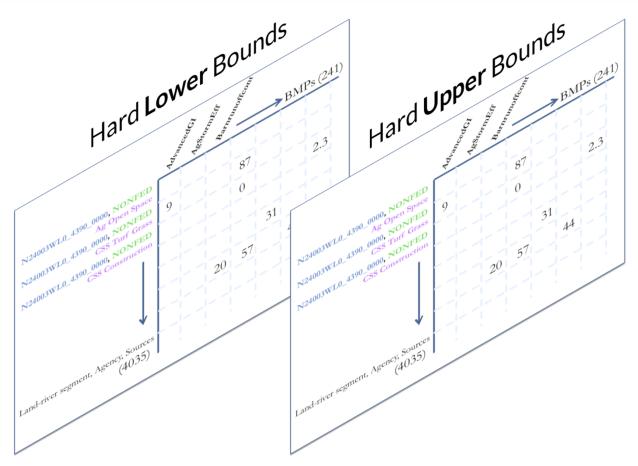
- Preliminary scenario generation logic decision variable space
- Preliminary graphical interface design

Cloned on CBP cloud server

Metadata

- Base Year, Base Condition, Wastewater data
- Cost Profile
- Geography

Variable groups to modify ([Source, BMP] amounts that the optimization is allowed to tweak)


- Agencies
- Sectors

Constraints for variables

Scenarios Generated from this decision space

For Land, Animal, and Manure

- 20% sparse when including all land river segments, agencies, sources, BMPs
- ~200,000 knobs to turn for Anne Arundel County
- Basic constraints determine hard upper and lower bounds

Development: Where do things stand?

Fast CAST:

PyCast (python) is likely to be transformed into CoreCast (C#)

OptSandbox:

v0.1 (querying/parsing from Excel Sheets)

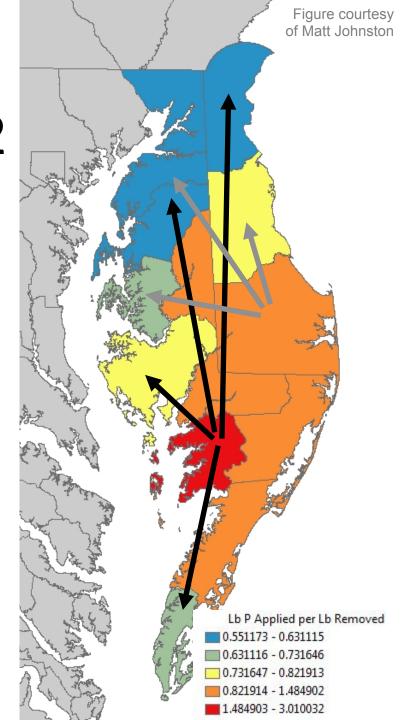
v0.2 (querying/parsing from flattened tables of SQL Server data)

Estimated dates:

- ~ One month for transition to SQL Server data
- ~ Fall for development team transforming Cast to FastCAST

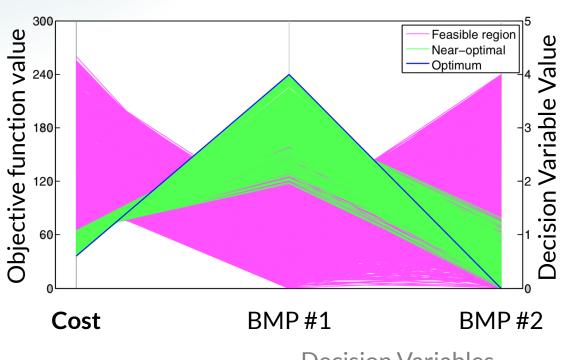
Development

Medium-term products


Medium-term product concept 1of2

Manure Transport Optimization

Assuming manure can be moved across the Delmarva, what is the least costly (best environmental) outcome for manure redistribution?


For Example

County From	County To	Amount
Caroline	Cecil	41
Caroline	Wicomico	30
Dorchester	Cecil	90
Dorchester	Talbot	8
Sussex	New Castle	76

Medium-term product concept 2of2

Scenario Generator, Explorer, Comparer

An objective and batch sampling of the solution space could provide automatic comparisons with scenarios of interest

Decision Variables

Development

Medium-term products

Next Steps

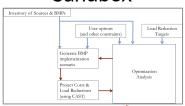
- SQL server data queries to generate decision variable space
- Offline batch scenario analyses
- Manure transport analyses
- Response to STAC workshop

Next Steps

- SQL server data queries to generate decision variable space
- Offline batch scenario analyses
- Manure transport analyses
- Response to STAC workshop

Looking ahead

- Data flow
 - Cloud architecture
 - Modular access to CAST procedures allowing for multi-step optimization
- Algorithm testing
 - Hybrid Pop.-based & Nonlinear Prog.
 - Machine learning approaches
- Co-benefits, Alternatives

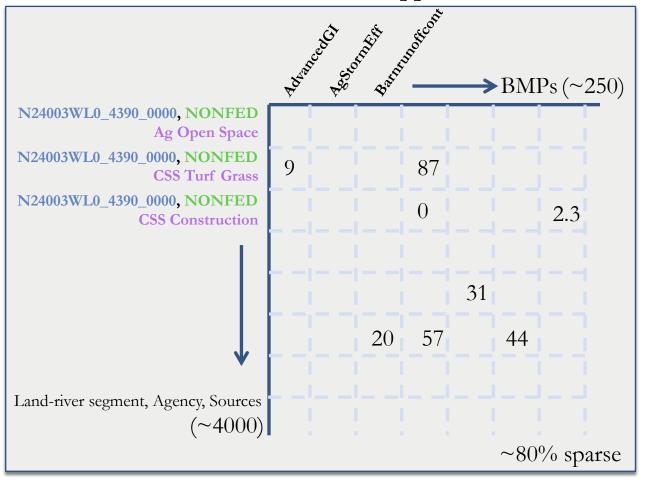

Next Steps

Looking ahead

- SQL server data queries to generate decision variable space
- Offline batch scenario analyses
- Manure transport analyses
- Response to STAC workshop

- Data flow
 - Cloud architecture
 - Modular access to CAST procedures allowing for multi-step optimization
- Algorithm testing
 - Hybrid Pop.-based & Nonlinear Prog.
 - Machine learning approaches
- Co-benefits, Alternatives

Sandbox



Identifying Alternatives

Cost Tradeoffs

- Include all land river segments, agencies, sources, BMPs
- ~200,000 knobs to turn for Anne Arundel County
- Basic constraints determine hard upper and lower bounds

