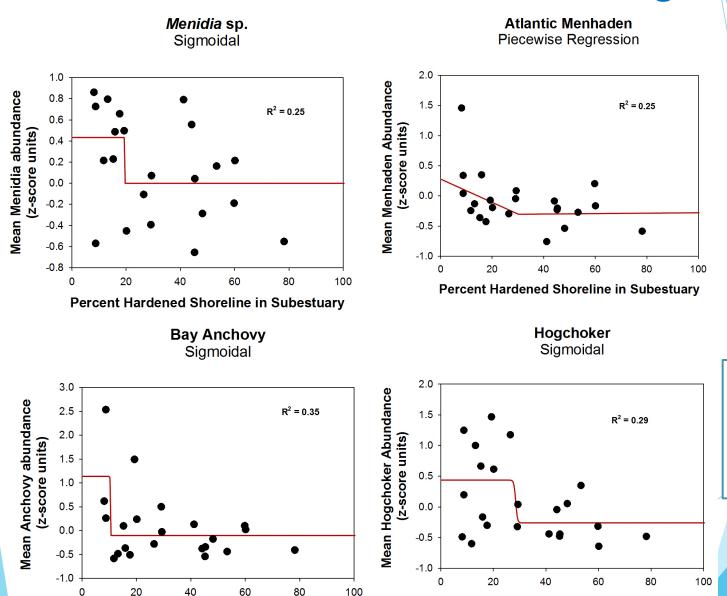
UPDATE: Bay Wide Approach: Threshold effects of altered shorelines and other stressors on forage species in Chesapeake Bay

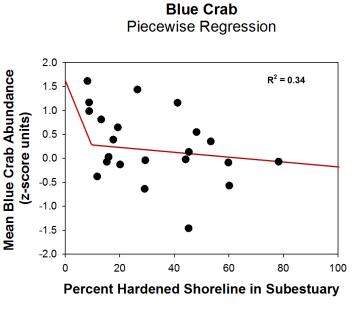
PIs Rochelle Seitz & Rom Lipcius,
Gabby Saluta (VIMS),
Denise Breitburg, Tom Jordan, Don Weller (SERC),
and Matt Kornis (USFWS)



Bay-wide Approach: Methods

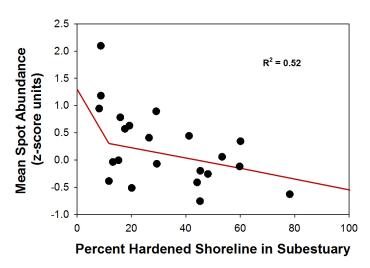
- ► Examine previously compiled Bay-wide data sets (588 sites Kornis et al. 2017) for threshold shoreline condition effects on important forage species (identified in Ihde et al. 2015 report)
- Graphical approach fitting non-linear curves (piecewise, sigmoidal)
- Examine new data sets (e.g., juvenile blue crab survey and Bay-wide blue crab dredge survey) for threshold shoreline condition effects for blue crabs

Results: Curves for thresholds - forage fish


Percent Hardened Shoreline in Subestuary

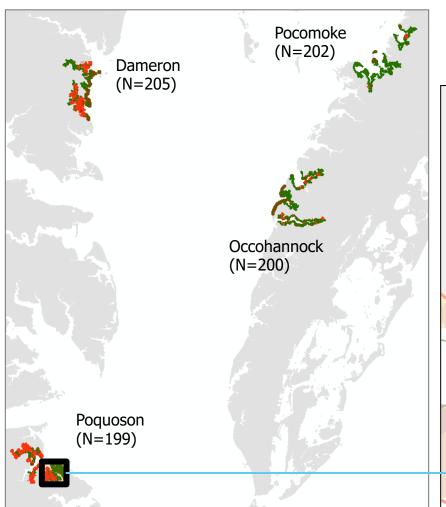
Percent Hardened Shoreline in Subestuary

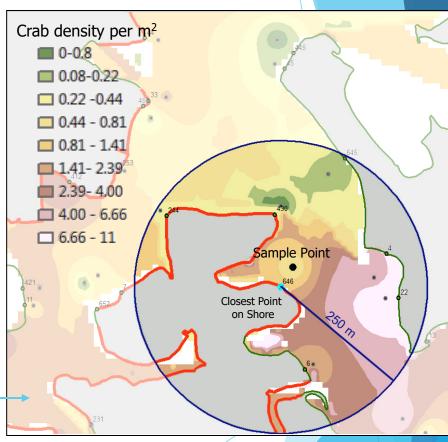
All improved over linear:
-Menidia
R² 0.25>0.16
-Anchovy
R² 0.35>0.13
-Menhaden
R² 0.25>0.18
-Hogchoker
R² 0.29>0.19


Threshold levels:
-Menidia 20%
-Anchovy 10%
-Menhaden 30%
-Hogchoker 30%

Results: Curves for thresholds - Crab, Spot, Croaker

Croaker Piecewise Regression 2.5 Mean Croaker Abundance 2.0 $R^2 = 0.76$ (z-score units) 1.5 1.0 0.5 0.0 -0.5 20 40 60 80 100 **Percent Hardened Shoreline in Subestuary**


Spot Piecewise Regression

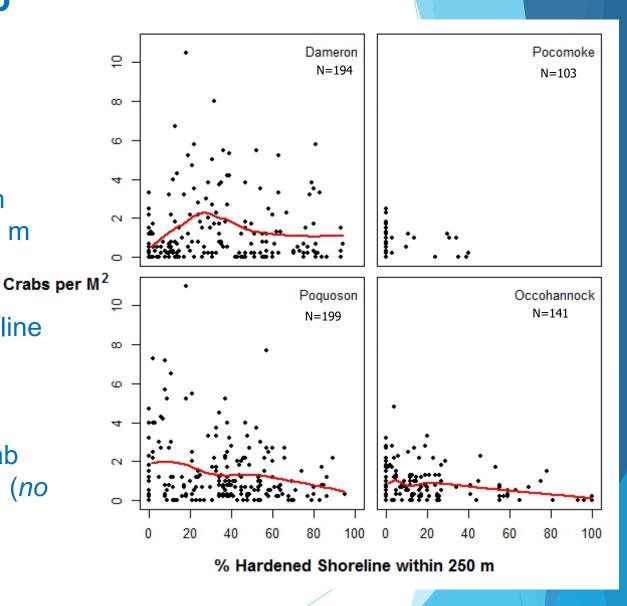


All improved over linear: -Crab -Spot R^2 0.52>0.29 -Croaker R^2 0.76>0.29

Threshold levels: -Crab 10% -Spot 10% R² 0.34>0.16 -Croaker 10%

Juvenile Crab Survey Methods: 4 locations – link crab sample to nearest shoreline

Shoreline Key Red = developed Green + Brown = natural Used only points <250 m from shore Calculated % developed within 250 m of that point


Juvenile blue crab survey: threshold with % hardened shore?

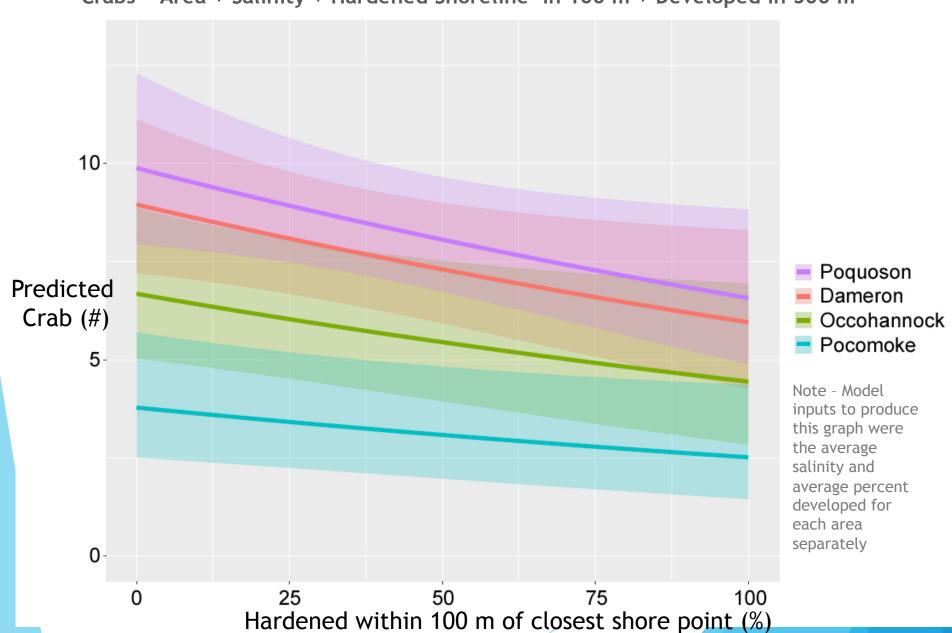
 Only points within 250 m from land and using 250 m shoreline buffer

 Red is Loess smoothed line through data

 Results: declining linear relationship between crab density and % hardened (no threshold)

 AIC used to compare influence of % hardened shore and upland use

Model		Variables (Estimate and SE)									
		Intercept	Area	Temperature (°C)	Salinity (psu)	Dissolved O ₂ (mg/L)	Shoreline % Hardened	Upland % Devel			
	g_1	B ₀	B ₁ -B ₃	B ₄	B ₅	B ₆	B ₇	B ₈			
	g_2	B_0	B ₁ -B ₃		B ₅		В ₇	B ₈			
	g ₃	B_0	B ₁ -B ₃				B ₇	B ₈			
	g_4	B_0	$B_1 - B_3$					B ₈			
	9 ₅	B_0	$B_1 - B_3$				B ₇				
	9 ₆	B_0	$B_1 - B_3$								
	9 ₇	B_0									
١.											

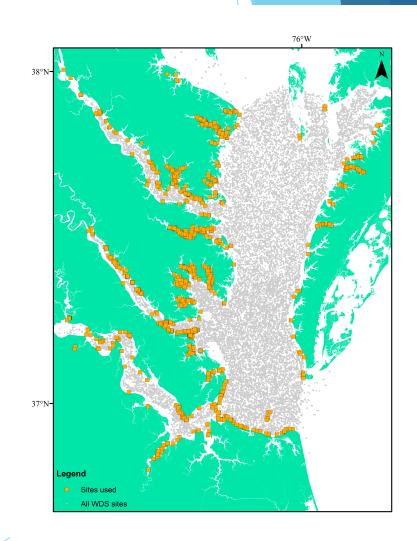

Model	k	AIC	ΔΑΙC	Wi	Coe	efficient		Estimate	SE	IRR
g ₁	10	2730.9	0.9	0.35	Inte	ercept		0.8235	0.5434	2.279
g_2	8	2730.0	0.0	0.56		<	Occohannock	-0.5318	0.1978	0.588
9 ₃	7	2735.7	5.7	0.03		AREA	Pocomoke	-1.1447	0.2583	0.318
9 ₄	6	2738.3	8.3	0.01			Poquoson	-0.2844	0.1903	0.752
9 ₅	6	2735.3	5.3	0.04	Sali	nity		0.0894	0.0336	1.094
g_6	5	2738.0	8.0	0.01	Sho	Shoreline % Hardened		-0.0041	0.0019	0.996
9 ₇	2	2746.5	16.5	0.00	Upl	Upland Use % Developed		-0.0020	0.0032	0.998

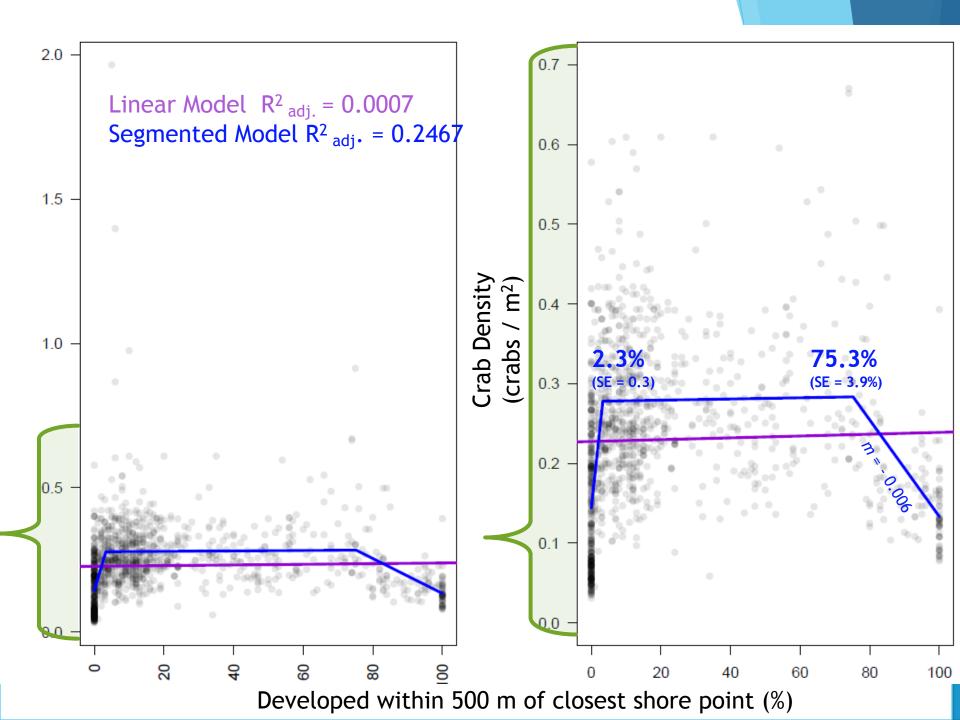
Interpretation of the Incidence Rate Ratio (IRR) for significant variables

- 1. There are 41.2% fewer and 68.2% fewer crabs in Occohannock and Pocomoke compared to Dameron
- 2. For every 1 psu increase in salinity, there is a 9.6% increase in crabs
- 3. For every 1 % increase in hardened shoreline there is 0.4% decrease in crabs

Best Model (w_i= 0.56)

Crabs ~ Area + Salinity + Hardened Shoreline in 100 m + Developed in 500 m




Blue Crab Winter Dredge Survey

LOESS line between % upland developed and crabs suggested a threshold, thus, we used a segmented model

Note- since only 1% of dredge points fell within 100 m of shore, % hardened shoreline was excluded from analyses, but Upland development examined

Used dredge survey sites within 500 m of shore (yellow)

Conclusions & Future Directions

- Continue analyses and explore curve-fitting for subset of upland use
- Comparison of Bay-wide and Subestuary-scale approach
- Coordination with CBT
- Propose a numerical threshold for shoreline hardening for some species but not others
 - Of the 7 species with thresholds, range was 10-30% shoreline development
 - Mean was 17%
- Juvenile blue crabs show general decline with shoreline development
 - For every 1% increase in hardened shoreline, there was a 0.4% decrease in crabs
- Development and upland-use decisions should consider reductions in forage species
 - We thank Chesapeake Bay Trust for funding

