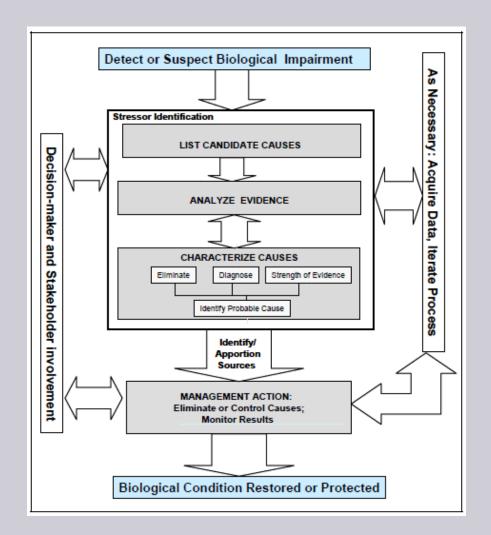
Stressor-identification in the Chesapeake Basin

Adam Griggs
Update to the Non-tidal Workgroup
December 11, 2012

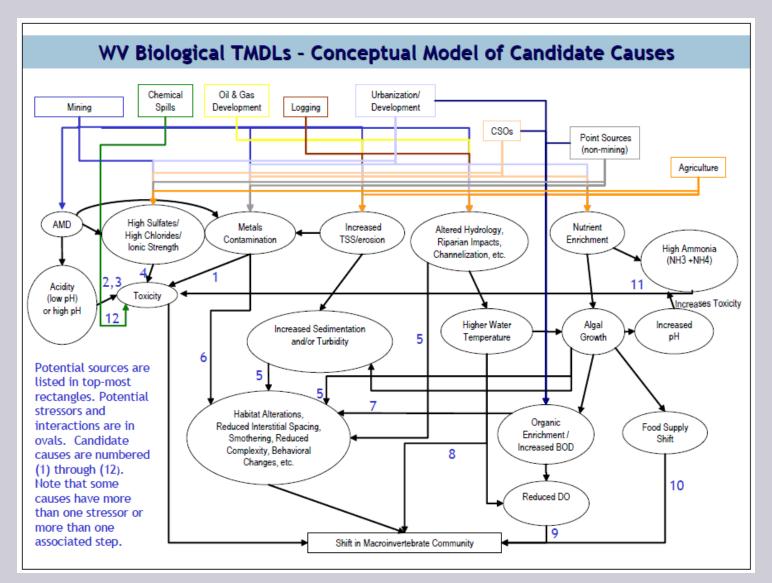
Project


- What stressor ID approaches are employed in the basin?
- What about them is similar or different?
- What is the federal guidance on stressor ID?
- Could jurisdictions benefit from additional resources?

Stressor Identification

₩Q **Aquatic Life** Routine **Standards Impairment** Monitoring 303(d) Category 5 Stressor Identification **TMDL**

EPA 2000 guidance


- Weight-of-evidence
- Data-driven
- Iterative framework
- Most Bay states follow this in some fashion

Virginia

- Guidance document in preparation?
- Process generally follows the 2000 guidance
 - Data-driven, iterative process
- Some stressor-threshold development
- Thresholds for unlikely, likely, and most probable stressor for certain pollutants
- Details were unavailable at the time

- <u>Document</u>: TMDL document for streams in the Elk River and Lower Kanawha River watersheds (2011)
 - Outlines the SI process used
 - Most closely follows EPA 2000 guidance
 - Conceptual stressor model

- Also developed multiple stressor thresholds
 - WVSCI vs. Stressor
 - 5 best-fit lines (quantile regression?)
 - Classified stressors as
 - Excluded
 - Equivocal
 - Weak
 - Possible
 - Likely
 - Definite

	Stressor Classification Thresholds					
Parameter	Exclusion	Equivocal	Weak	Possible	Likely	Definite
Periphyton (Qual. Ranking)	0	1	2	3	4	5
Fecal coliform (counts/100mL)	< 150	150.1 - 400	400.1 - 1400	1400.1 - 1900	1900.1 - 2300	> 2300.1
Iron Flocculation (mg/L)	<u>< </u> 0.49	0.5 - 0.7669	0.767 - 1.0169	1.017 - 1.3669	1.367 - 1.8669	> 1.867
% Fines	<u><</u> 34.9	35 - 44.9	45 - 49.9	50 - 59.9	60 - 69.9	> 70
RBP: Embeddedness	16 - 20	11 - 15	9 - 10	6 - 8	3 - 5	0 - 2
RBP: Sediment Deposition	16 - 20	11 - 15	9 - 10	6 - 8	3 - 5	0 - 2
RBP: Cover	16 - 20	11 - 15	9 - 10	6 - 8	3 - 5	0 - 2
RBP: Riparian Vegetation	16 - 20	11 - 15	9 - 10	6 - 8	3 - 5	0 - 2
RBP: Total	<u>≥</u> 110.1	100.1 - 110	85.1 - 100	75.1 - 85	65.1 - 75	<u>< 65</u>
Sediment Index	90 - 100	80 - 89.9	70 - 79.9	60 - 69.9	50 - 59.9	<u>< 4</u> 9.9
Aluminum (mg/L)	< 0.1049	0.105 - 0.1819	0.182 - 0.2269	0.227 - 0.3069	0.307 - 0.4419	> 0.442
pH (low)	<u>></u> 6.3	6.29 - 6.0	6.59 - 5.3	5.29 - 5.0	4.99 - 4.3	< 4.29
pH (high)	<u><</u> 8.39	8.4 - 8.69	8.7 - 8.79	8.8 - 8.89	8.9 - 9.09	> 9.1
Conductivity (µmhos)	<u><</u> 326.9	327 - 516.9	517 - 766.9	767 - 1074.9	1075 - 1532.9	> 1533
Sulfates	<u><</u> 56.9	57 - 119.9	120 - 201.9	202 - 289.9	290 - 416.9	> 417
Chlorides (mg/L)	<u>< 6</u> 0.0	60.1 - 80.0	80.1 - 125.0	125.1 - 160	160.1 - 229.9	> 230
Dissolved Oxygen (mg/L)	> 7.0	6.99 - 6.3	6.29 - 5.4	5.39 - 4.4	4.39 -3.2	<u><</u> 3.19
Temperature (°C)	< 25.69	25.7 - 26.69	26.7 - 27.69	27.7 - 28.89	28.9 - 30.59	> 30.6
Nitrite-Nitrate (mg/L)	< 0.6829	0.683 - 0.9829	0.983 - 1.549	1.55 - 2.0829	2.0830- 2.649	> 2.65
Total Nitrogen (mg/L)	< 2.1169	2.117 - 2.7329	2.733 - 3.3669	3.367 - 4.0329	4.033 - 4.9	> 5.0
Total Phosphorous (mg/L)	< 0.1319	0.132 - 0.1929	0.193 - 0.2829	0.283 - 0.369	0.37 - 0.509	> 0.51
Ammonia (mg/L)	< 0.99	1.0 - 1.09	1.1 - 1.19	1.2 - 1.349	1.35 - 1.649	> 1.65

Maryland

- <u>Document</u>: Biological Stressor Identification (BSID) Method
 - Case-control, risk-based approach
 - "Possible stressor" thresholds
 - Land-uses, habitat, water chemistry, and acid sources
 - Most derived from 90th pctl of a high-IBI control group

Maryland

		Ecoregions			
Potential Stressor		Highlands	Piedmont	Coastal Plain	
	Total Phosphorous (mg/L)	0.06	0.06	0.14	
	Ortho-Phosphate (mg/L))	0.02	0.02	0.02	
	Total Nitrogen (mg/L)	3.0	3.0	3.0	
Water Chemistry	Total Dissolved Nitrogen (mg/L)	3.0	3.0	3.0	
	Dissolved Oxygen (mg/L)	< 5.0	< 5.0	< 5.0	
	DO Saturation	< 60% or > 125%	< 60% or > 125%	< 60% or > 125%	
	Ammonia (mg/L)	CCC	CCC	CCC	
	рН	< 6.5 or > 8.5	< 6.5 or > 8.5	< 6.5 or > 8.5	
	Acid Neutralizing Capacity (μeq/L)	< 50 , < 200	< 50 , < 200	< 50 , < 200	
	Chlorides (mg/L)	50.0	50.0	50.0	
	Conductivity (µS/cm)	500	300	300	
	Sulfates (mg/L)	32.0	21.0	28.0	

Pennsylvania

- No formal SI document at this time
- Approach generally follows the 2000 guidance
- Routine sampling emphasizes ID of catchment pollutant sources
 - Field-biologists often perform "windshield surveys" of upstream catchment
 - Biologist understanding and judgment more heavily weighted
- Recent work to identify source-specific water chemistry thresholds

Delaware

- Has not had much need for stressor identification
- Nearly all TMDL waters have been listed for nutrients or bacteria
- The few Category 5 waters were handled by outside contractors
 - Generally followed the EPA 2000 guidance

New York

- **Document:** Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State; (Riva-Murray et al 2002)
- Impact Source Determination (ISD) Method
- Similar to a Percent Model-Affinity Approach
- 6 overall impact-source classes
 - Nonpoint nutrients, siltation, toxic, organic, complex, and impoundments.

New York

- Several "model communities" exist under each impact-stressor class (over 62 as of 2002)
- Sample-model agreement (taxonomic composition) of 50%+ indicate similarity
- New model communities are described as needed, including natural communities.

State Summary

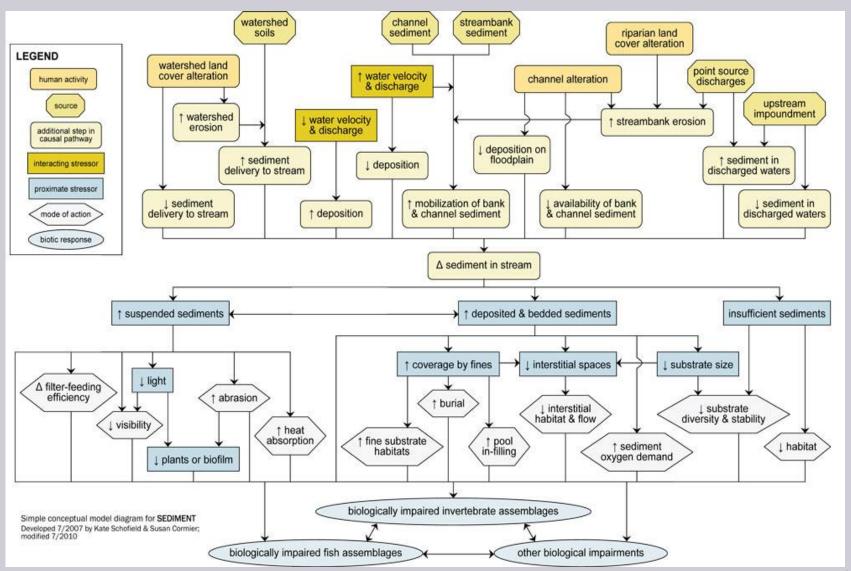
- Overall, great differences in SI methods across
 Bay jurisdictions
- MD and NY have developed formal methods to ID stressors
- All other states employ iterative weight-ofevidence or best-judgment approaches
 - Follow 2000 guidance
 - Can be time-consuming to repeat

State Summary

- Stressor-thresholds have not been developed consistently
- No stressor-response methods instead are correlative, based upon state IBI scores.
- Many thresholds vary widely between states

"Possible" Stressor	MD threshold	WV threshold
TP	0.06 mg/L	0.193 – 0.2829 mg/L
Sp. Cond.	500 μS (Highlands)	767 – 1064.9 μS
Chlorides	50 mg/L	125.1 – 160 mg/L
TN	3.0 mg/L	3.367 – 4.0329 mg/L

CADDIS


- Causal Analysis/Diagnosis Decision Information System (CADDIS)
- Designed to supersede the 2000 guidance
- Greatly expanded and moved <u>online</u>
- It can be unwieldy
- Currently, no Bay state is employing CADDIS

CADDIS

- CADDIS Website arranged into 5 volumes
 - Volume 1 The SI process
 - Volume 2 Review of candidate stressor literature
 - Volume 3 Analytical examples
 - Volume 4 Statistical methods
 - Volume 5 Literature database and interactive conceptual models

Sediment

CADDIS

Common Approach for the Bay

- Employ the CADDIS approach for the Bay Watershed
- Develop a suite of candidate-stressor criteria
 - "Non-stressor", "Possible", "Probable"
 - Developed over appropriate classifications
 - Could be applied to multiple tiers of waters
 - Useful for anti-deg
 - Protective thresholds for high-quality waters

Feedback

- Did we summarize your state approach correctly?
- How would your state benefit from this type of analysis?
- What would make stressor-thresholds more useful to you?
- Report is still draft we'd like to finalize

Adam Griggs | <u>agriggs@icprb.org</u>
Claire Buchanan | <u>cbuchan@icprb.org</u>