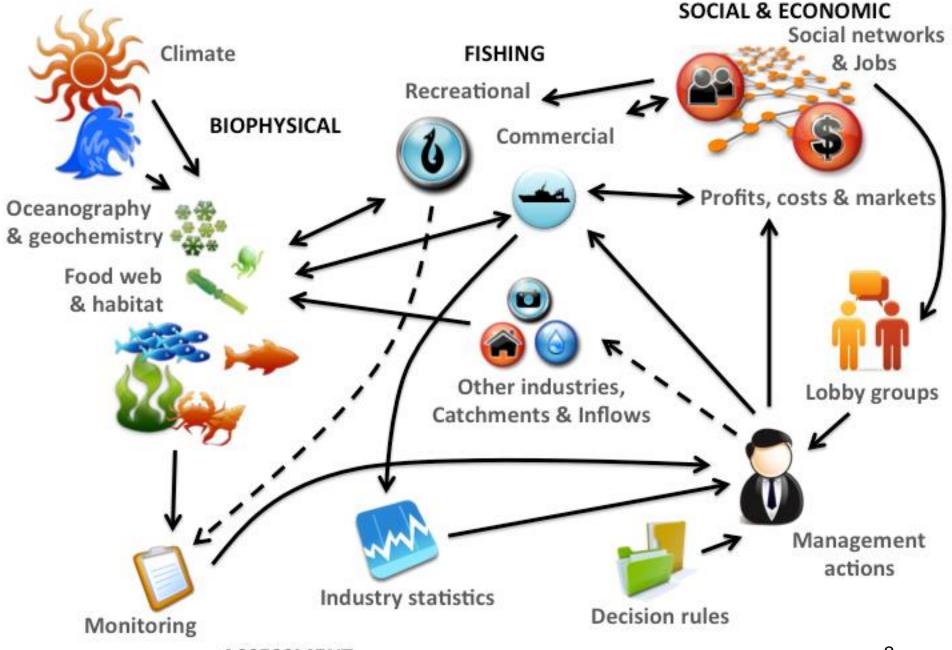
# The Chesapeake Atlantis Model:


An Adaptive Management Tool for Visualizing Productivity Changes Expected from Workgroup Efforts



Tom Ihde, ERT, Inc. for the NOAA Chesapeake Bay Office



CBP STAR, 28 July, 2016



# **Atlantis Applications**



### The Atlantis Model

"End-to-End" Approach
Factors Influencing Included:

Biological environment

- ✓ Primary production
- √Trophic interactions
- ✓ Recruitment relationships
- ✓ Age structure
- √Size structure
- ✓ Life History
- √ Habitat also refuge
  SAV, Marsh, Oysters

### **Fisheries**

- ✓ Multiple sectors
- √Gears
- ✓ Seasons
- √Spatially explicit



- √ Chemistry
- √Circulation & currents
- ✓ Temperature
- √Salinity
- ✓ Water clarity
- √Climate change

### **Nutrient Inputs**

- √Currency is Nitrogen
- √Oxygen
- √Silica
- ✓3 forms of detritus
- √ Bacterial nutrient cycling



### Management Strategy Outcomes & Key Actions

#### STAR:

- ✓ Development and testing of ecological indicators
- ✓ Integrative tool for multiple datasets visualize data trends & effects on common scale

#### Water Quality-Goal Implementation Team (GIT):

- √ Visualize, improve understanding of ecosystem services of attainment of TMDL or a range of levels of attainment
- √ The simulation of all other Outcomes in the context of the TMDL conditions for the Bay
- ✓ Demonstrate and quantify the benefit of improved monitoring, and filling of data gaps

#### Climate Resiliency & Adaptation:

- √ Visualize likely impacts of expected temperature increase and salinity change
- ✓ Support development of research agenda identify most critical data or research gaps
- √ Visualize future realizations for public, stakeholder, and local engagement
- √ Simulate implementation of priority adaptation actions
- ✓ Develop and test climate resilience indicators to assess adaptation action effectiveness

#### Habitat-GIT:

- √ Visualize range of attainment for SAV Outcome: acreage benefits, water clarity benefits
  and restoration benefits
- √ Fish Passage: Visualize benefits (& ecosystem services) of restored populations
- ✓ Wetlands outcome range of attainment, simulate ecosystem services

#### Sustainable Fisheries-GIT:

- ✓ Blue crab ecosystem effects of varying abundance; harvest sectors allocation
- ✓ Oyster restoration visualize benefits of restoration
- √ Fish habitat visualize effects of loss or gain
- √ Forage simulate predator population effects of loss or gain of forage groups

### Management Strategy Outcomes & Key Actions

STAR: In the context of the TMDL attainment and expected Climate Change

- ✓ Development and testing of ecological indicators
- ✓ Integrative tool for multiple datasets visualize data trends & effects on common scale

#### Water Quality-Goal Implementation Team (GIT):

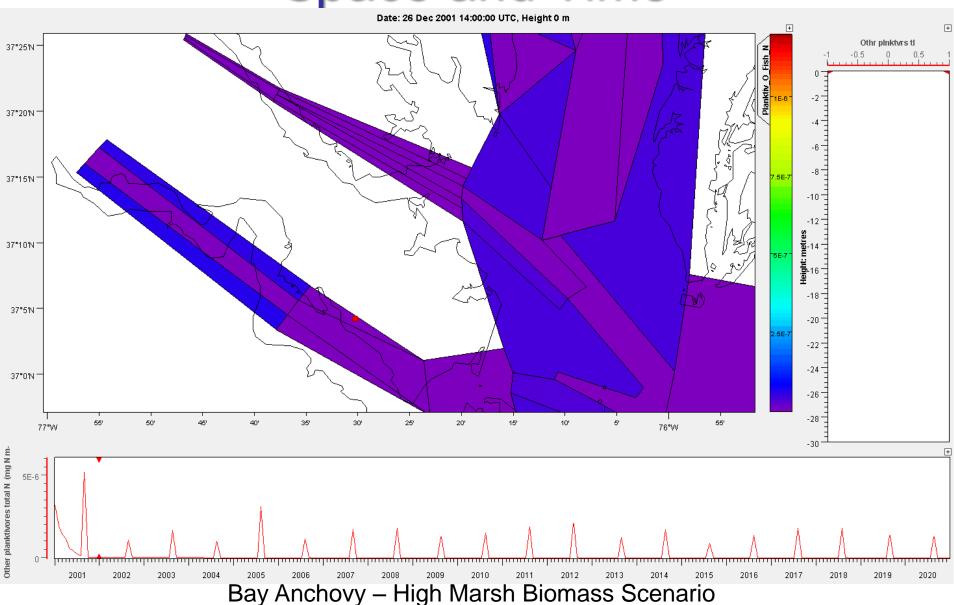
- √ Visualize, improve understanding of ecosystem services of attainment of TMDL or a range of levels of attainment
- √ The simulation of all other Outcomes in the context of the TMDL conditions for the Bay
- ✓ Demonstrate and quantify the benefit of improved monitoring, and filling of data gaps

#### Climate Resiliency & Adaptation:

- √ Visualize likely impacts of expected temperature increase and salinity change
- ✓ Support development of research agenda identify most critical data or research gaps
- √ Visualize future realizations for public, stakeholder, and local engagement
- ✓ Simulate implementation of priority adaptation actions
- ✓ Develop and test climate resilience indicators to assess adaptation action effectiveness

#### Habitat-GIT:

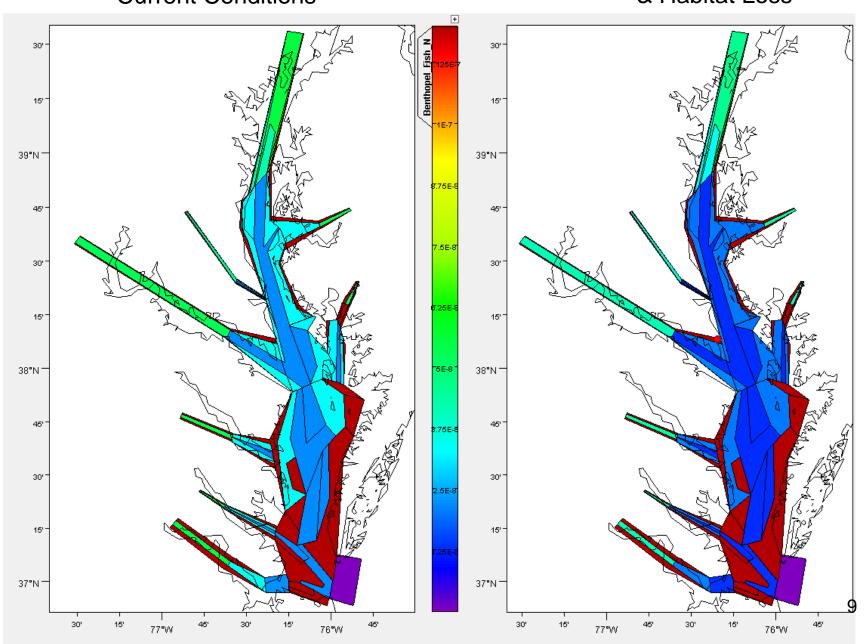
- √ Visualize range of attainment for SAV Outcome: acreage benefits, water clarity benefits and restoration benefits
- ✓ Fish Passage: Visualize benefits (& ecosystem services) of restored populations
- ✓ Wetlands outcome range of attainment, simulate ecosystem services


#### Sustainable Fisheries-GIT:

- ✓ Blue crab ecosystem effects of varying abundance; harvest sectors allocation
- ✓ Oyster restoration visualize benefits of restoration
- √ Fish habitat visualize effects of loss or gain
- √ Forage simulate predator population effects of loss or gain of forage groups

# The Chesapeake Atlantis Model

Visualization of Management Strategy
Outcomes


# System Changes Over Space and Time



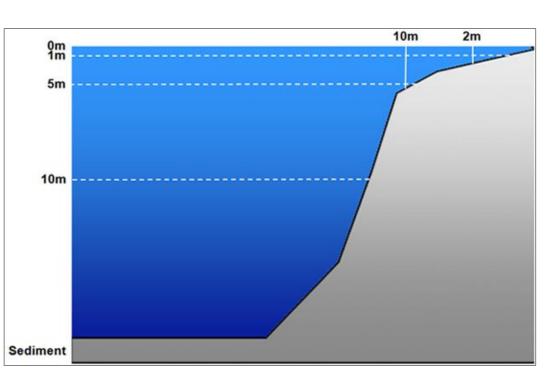
**Current Conditions** 

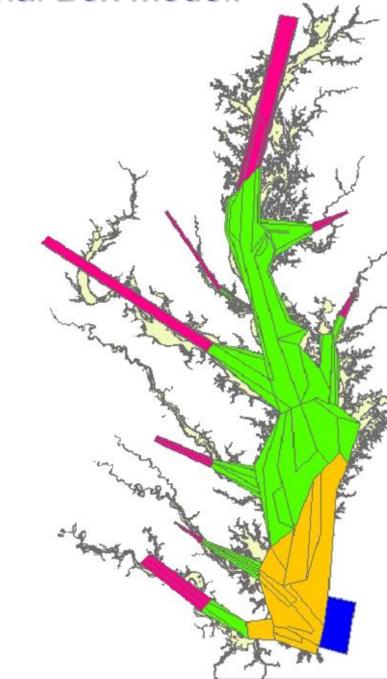
## Striped Bass Temperature increase & Habitat Loss

& Habitat Loss

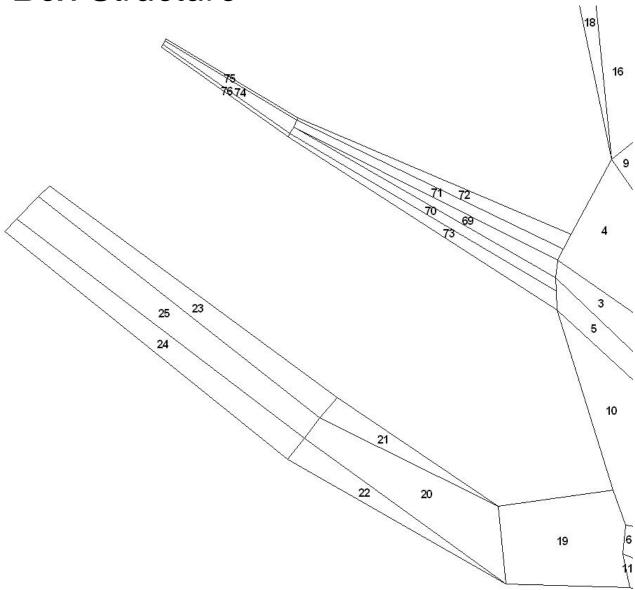





CAM Design: 3-Dimensional Box Model:


Salinity

1-10


10-18

18-30





### CAM: River Box Structure



### Ecological Groups: Federal fisheries, Forage, Protected, Habitat

#### **Finfish**

- Alosines (Amer.Shad, Hickory Shad, Alewife & Herring)
- Atlantic Croaker
- Bay anchovy
- Black drum
- Bluefish
- Butterfish, harvestfish ("Jellivores")
- Catfish
- Gizzard shad
- Littoral forage fish / silversides, mummichog
- Menhaden
- Striped bass
- Summer flounder
- Other flatfish (hogchoker, tonguefish, window pane, winter flounder)
- Panfish:

Euryhaline: Spot, silver perch; FW to 10ppt: yellow perch, bluegill

- Reef assoc. fish: spadefish, tautog, black seabass, toadfish
- Spotted hake, lizard fish, northern searobin
- Weakfish
- White perch

#### **Elasmobranchs**

- Cownose ray
- Dogfish, smooth
- Dogfish, spiny
- Sandbar shark

#### Birds <sup>₹</sup>

- Bald Eagle
- Piscivorous birds (osprey, great blue heron, brown pelican, cormorant)
- Benthic predators (diving ducks)
- Herbivorous seabirds (mallard, redhead, Canada goose, & swans)

#### **Mammals**

- Bottlenose dolphin

#### Reptiles

- Diamond-back Terrapin
- Seaturtles

#### Invertebrates 7

- Benthic feeders: (B-IBI "CO"+"IN") . - Benthic predators: (B-IBI "P") ...,
- Benthic suspension feeders: (B-IBI "SU")
- Blue crab YOY
- Blue crab adult
- Brief sauid
- Macoma clams: (B-IBI)
- Meiofauna: copepods, nematodes,
- Oysters

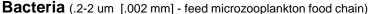
#### **Primary Producers**

Benthic microalgae ("microphytobenthos" benthic diatoms, benthic cyanobas & flagellates)

<sup>//</sup>"Grasses:"

**SAV** – type varies with salinity

#### Marsh grass


- Phytoplankton Large: diatoms & silicoflagellates (2.4)
- Phytoplankton Small: nannoplankton, ultraplankton, aka "picoplankton" or "picoalgae" (0.2-2um),
  - cyanobacteria included (2um)
- Dinoflagellates (mixotrophs) (5-2,000um)

#### ZooPlankton

- Ctenophores
- Sea nettles
- Microzooplankton (.02-.2mm): rotifers, ciliates, copepod naupli
- Mesozooplankton (.2-20mm): copepods, etc.

#### **Detritus**

- Carrion
- Carrion (sediment)
- Labile
- Labile (sediment)
- Refractory
- Refractory (sediment)





# **Application** Outline

### Stressors / system changes:

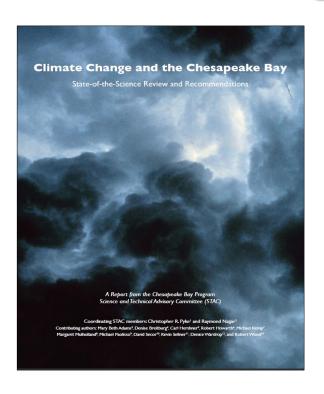
- Habitat loss:
  - Marsh, SAV
- Water column factors:
  - Nitrogen & Total Suspended Solids
- Climate forcing:
  - Temperature increase

Simulation results
Next Steps

# Habitat Scenario Assumptions

- 50% loss of Marsh

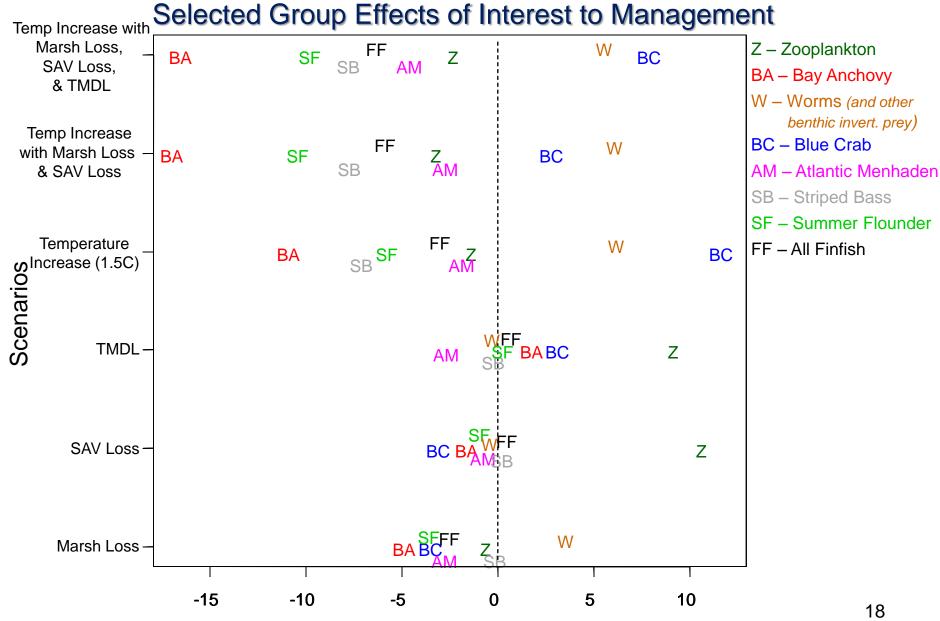
   (area & biomass)


   Due to multiple, interacting factors:
  - shoreline armoring
  - subsidence
  - sea level rise
- 50% loss of Seagrass

# Water Column Habitat Assumptions

"TMDL" = Total Maximum Daily Loads of Nitrogen & turbidity – full attainment:

- Nitrogen
  - 25% reduction
- Turbidity (total suspended solids)
  - 20% reduction


# Climate Change Assumptions





- Najjar et al. (2010); IPCC AR4 (2007)
- 50 years from now:
  - ✓ Increased water temperature (1.5°C)
  - ✓ Salinity (+/- 2 ppt)

### Sensitivity To Factors Influencing



Percentage Change

# Summary

- CAM is a readily available tool able to support many of the critical needs of the CBP Workgroups Outcomes and Key Actions not directly focused on water quality
- Temperature increase produces relatively strong effects on production compared to losses of marsh, SAV, or the TMDL water quality improvements
  - Modeling other stressors without expected temperature increase could be misleading
- Reasonable trends can be predicted modeling a single stressor if you happen to choose the dominant stressor
  - Risk is relatively large if workgroups miss the dominant stressor - for some important Chesapeake managed fish (~10 % loss in production)

### Next...

- ✓ Test sensitivities, explore current hypotheses: pred-prey mismatches; shifts in state of system; DO
- ✓ Verify trends with other models where possible
- ✓ Add other effects of climate change:
  - allow movement preferences for changing climate conditions (temperature, salinity)
  - shifts in timing of migration & spawning
- ✓ Acidification effects

### Thanks to:











### **Marine and Atmospheric Research**



