Bacteria Management in Urban Watersheds

URBAN STORMWATER WORKGROUP SEPTEMBER 18, 2018

Background

Stormwater Forum in February – USWG request for guidance on 3 topics:

- ➤ Source Analysis Techniques
- ► Land Use Loading Rates
- ➤ BMP Performance Data

Ad Hoc Team convened to do a literature review and summary report

Team Member	Affiliation
Ted Brown	Biohabitats
Carrie Colbert	CSN
Luke Cole	D.C. Dept of Energy and Environment
Manasa Damera	AECOM
Dillon Goodell	D.C. Dept of Energy and Environment
Doug Griffith	Anne Arundel County
Tom Schueler	CSN
David Wood	CSN

Emerging Science: Source Tracking

Improving How We Target Sources (Microbial Source Tracking)

Polymerase Chain Reactions (PCR)

- Presence
- Quantity
- Source Distribution

Less Dependent Upon "Libraries"

Emerging Science: Source Tracking

- ➤ Developing New Indicators
 - ➤ Bacteriodes HF183
 - Increasing Sensitivity and Selectivity
 - > Less cross-reactions
 - ► Viral markers have potential
 - ➤ Non-biological markers
 - ➤ Caffeine and acetaminophen have potential but degrade quickly.

Land Use Loading Rates

NSWQD (2005)

- High Data Variability
- Concentrations above RWQC
 - (126 cfu/100mL for E. Coli)

Other important land use predictors

- High Impervious Cover
- High sediment yielding Land Uses
- Low density Residential septic

	Median Fecal Coliform Concentration (MPN/100mL)
Mixed Residential	11,210
Open Space	7,200
Residential	7,000

Land Use Loading Rates

Selvakumar and Borst, 2006

- High Data Variability
- Concentrations similar to NSWQD
- High Density Residential > Low Density Residential > Commercial

Kelsey et al. 2004

- GIS-based regression model
- Proximity to septic systems and high impervious cover were strong predictors
- > Too many confounding variables proximity to water, residential, etc.

Bacteria BMP Performance

Extrapolating to other BMPs

- ➤ Performance research is limited to just a few types of BMPs
- ➤ Some removal mechanisms may translate
- Proceed with caution

Bioretention

Field Studies: -197% to 92% removal (average around 80%) for E. Coli

Showed ability to meet RWQC (126 cfu/100mL E. Coli) but not always

Factors influencing performance:

- > Hydraulic retention time
 - > Temperature
 - > Time
 - Media Amendments

Constructed Wetlands

Field Studies: 33% to 96% removal for E. Coli

Rarely met RWQC (126cfu/100mL E.Coli)

Factors Influencing Performance

➤ Hydraulic Residence Time

➤ Design (depth and macrophyte plantings)

➤ Storm Intensity

Stormwater Ponds

Field Studies: 0% to 46% removal for E. Coli

Rarely met RWQC (126cfu/100mL E. Coli)

Factors Influencing Performance

➤ Pond Depth

➤ Contributing Drainage Area

➤ Storm Intensity

Other Stormwater BMPs

Not recommended as part of a bacteria management strategy:

- **→** Dry Ponds (Detention basins)
 - ➤ Highly variable frequently act as a source
- **≻**Swales
 - ➤ Consistently found to be a bacteria source

Other Stormwater BMPs

BMPs that show some potential:

≻Buffers/Filter Strips

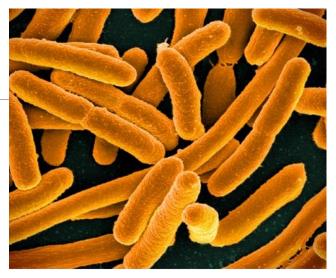
- ➤ High variability (30-75%)
- Sensitive to soil, vegetation, storm intensity
- ➤ Susceptible to re-suspension

≻Tree Pits

- ► Limited study
- ➤ High performance (90+%)
- ➤ Caution with impacts of media additives and potential nutrient/metal leaching

Takeaways*

- ➤ Not a lot has changed in the past 10 years
- ➤ More studies still needed, especially field-scale
- > We understand FIBs better, but not necessarily how to manage them better



^{*}Takeaways represent the opinions of CSN and not necessarily the ad-hoc group. All rotten tomatoes and fist shaking should be directed accordingly

Takeaways*

- ➤ Mimicking the Bay TMDL nutrient accounting structure is not yet supported
 - Land Use loading rates and BMP removal efficiencies are highly variable but may still be useful to support decision making
- Structural BMPs are not enough to meet RWQC by themselves
 - But some are better than others
- Source "sleuthing" is still the most effective approach to management
 - >IDDE programs can be leveraged

*Takeaways represent the opinions of CSN and not necessarily the ad-hoc group. All rotten tomatoes and fist shaking should be directed accordingly

Where Do We Go From Here?

- > Determine how to better quantify bacteria co-benefits of stormwater BMPs
- ➤ Showcase successful bacteria management programs
- ➤ Isolate key design factors that could improve bacteria performance for the next generation of BMPs
- > "Program focus" source control, education to reduce health risk, IDDE, etc.
- Full report and webcast coming soon including references

