Responses to WTC Comments on Expert Panel Reports

June USWG Meeting

Key WTC Comments

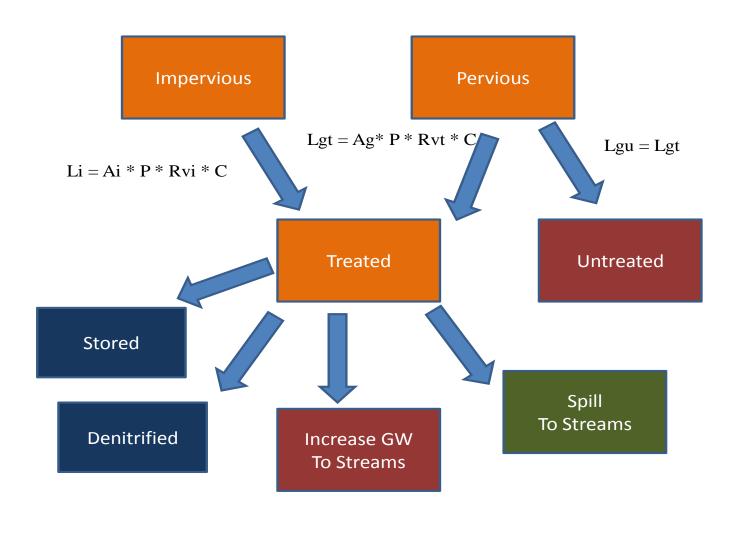
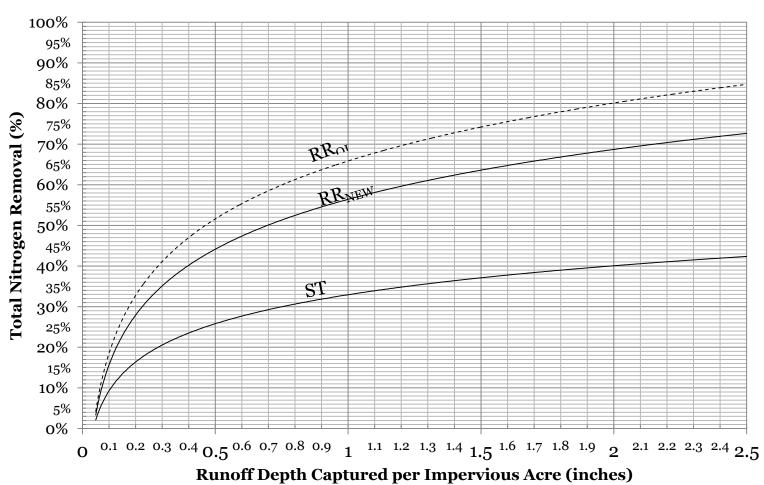
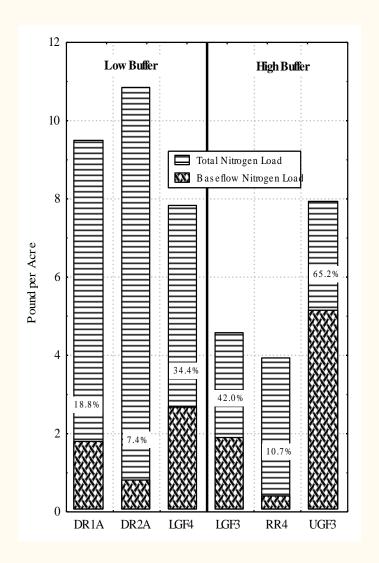
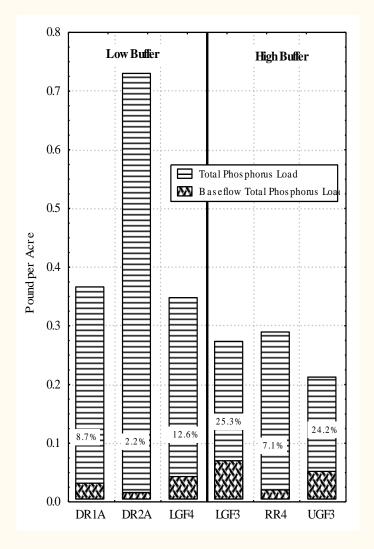
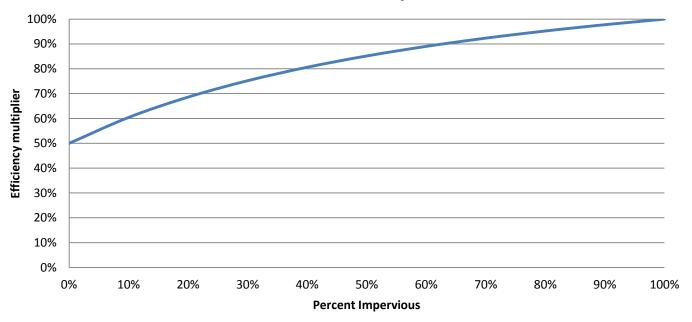

- Revision 1. Revising TN Adjustor Curve to Reflect Base flow Nitrate Movement in Urban Watersheds.
- Revision 2. Make a Short Term and Long Term Recommendation on how the new removal rate protocols can be better integrated into CAST

Table D-1
Edge of Stream Unit Loading Rates for Bay States Using CBWM v.
5.3.2


No Action Run, State-wide Average Loading Rates, average of regulated and unregulated MS4 areas


BAY	Total		Total		Suspended	
STATE	Nitro	ogen	Phosphorus		Sediment	
	Pounds/acre/year			Pounds/acre/year		
	IMPERV	PERV	IMPERV	PERV	IMPERV	PERV
DC	13.2	6.9	1.53	0.28	1165	221
DE	12.4	8.7	1.09	0.25	360	42
MD	15.3	10.8	1.69	0.43	1116	175
NY	12.3	12.2	2.12	0.77	2182	294
PA	27.5	21.6	2.05	0.61	1816	251
VA	13.9	10.2	2.21	0.60	1175	178
WV	21.4	16.2	2.62	0.66	1892	265


Source: Spreadsheet output provided by Chris Brosch, CBPO, 1/4/2012


Total Nitrogen Removal for RR and ST Practices

Reduction Multiplier

$$N_{adj} = RR_{NEW} x (1 - P/2)$$

 $N_{adj} = ST x (1 - P/2)$

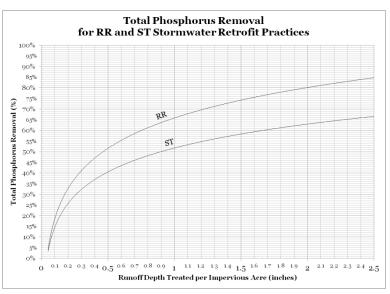
Where P = pervious fraction of site area

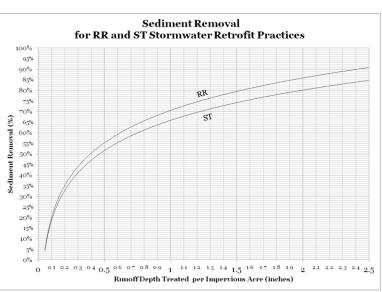
Design Examples - New Retrofit Facility Bioretention Area

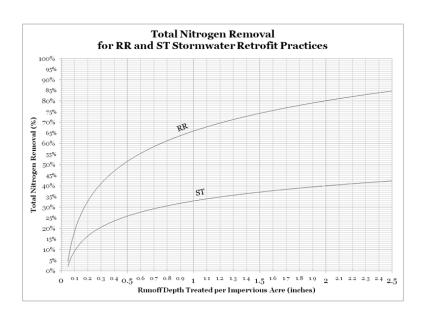
- A bioretention area is built in parkland as a retrofit, classified as a RR practice
- The retrofit storage is estimated to be 1.67 acre-feet
- Treats runoff from 50 acre residential neighborhood with 40% impervious cover

Design Examples - New Retrofit Facility

Using the Standard Retrofit Equation:


$$=\frac{(RS)(12)}{IA}$$


- RS = Retrofit Storage ≈ 1.67 ac-ft
- IA = Impervious Area = 20 acres


$$\frac{(1.67)(12)}{20} = 1.0 inch$$

Design Examples - New Retrofit Facility

Pollutant Removal Efficiencies of the practice

TP	TN	TSS
69%	65%	66%

Example of Revised TN Rate

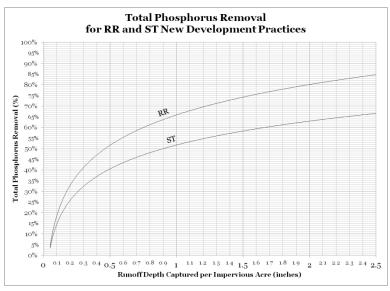
- Base TN removal rate using new curve drops from 68% to 57%
- Pervious Cover Adjustment: (1-0.6/2) = 0.7
- 57% * 0.7 = 40%
- Drops from 68 % to 40% in this example
- TP and TSS rates remain the same

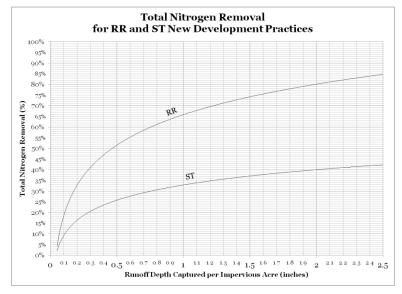
Design Examples Low Density Residential

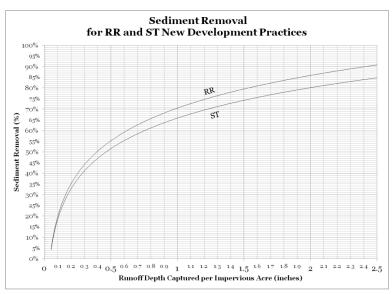
- Development of 25 acre site in $\frac{1}{2}$ acre lot residential subdivision in Pennsylvania
- Predevelopment conditions: 50% forest, 50% meadow + 100% C soils
- Post-development land cover: 25% impervious, 50% turf, 25% forest
- Will use a mix of RR practices

Design Examples Low Density Residential

Using the New Development Equation:


$$=\frac{(EP)(12)}{IA}$$


- EP = Engineering Parameter = 1.16 ac-ft
- IA = Impervious Area = 6.25 acres


$$\frac{(1.16)(12)}{6.25} = 2.23 inch$$

Design Examples Low Density Residential

Pollutant Removal Efficiencies of the practice

TP	TN	TSS
82%	82%	88%

Example of Revised TN Rate

- Base TN removal rate using new curve drops from 82% to 71%
- Pervious Cover Adjustment: (1-0.5/2) =
 0.75 (forest cover excluded)
- 71% * 0.75 = 53%
- Drops from 82% to 53% in this example
- TSS and TP rates remain the same

BMP Restoration Credit

 qualifying condition that the proposed restoration activities be significant enough to achieve the intent of the original water quality design criteria in the era it was built (e.g., sediment cleanouts would need to be sufficient to recover the full water quality storage capacity that was originally approved for the BMP, under historically less stringent standards, regardless of whether the BMP was reported in the CBWM input deck.