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Outline
Optimization: what and why?

How can it help implementation planning?
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What is optimization?
Choose the “best” alternative from the feasible possibilities

Four elements:
• “Best”: defined by one (or more) objective functions

E.g., MIN cost, MIN loadings

• “Possibilities”: decision variables whose values we determine
E.g., how much $ to invest in BMP type i at location j

• “Feasible”: values of variables are limited by constraints
E.g., must meet TMDL target; limited # of suitable sites; mass balances

• “Solver”: a procedure, computer program
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What is optimization?
Example: 

Choose BMPs x, y (= decision variables)…  

… in order to MIN Objective = Cost =  3x + 2y

…  subject to constraints:   

0.7(1-x) + 0.9 (1-y) < 0.6 (= TMDL)

0 < x, y < 1
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 Solver: Here, linear programming (can consider >106 variables)
• Other types: discrete linear programming, nonlinear programming
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What is optimization?
Nonlinear Example:    

y is Conservation Till, z is Stream Grass Buffer

MIN Cost =  3x + 2y + 1.5z

subject to:   0.7(1-x) + 0.9 (1-y)(1-z) < 0.6

0.2 < x, y, z < 1
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Solution: x = 0.2, y = 0.2, z = 0.94
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Why optimization?
Optimization can suggest good alternatives for further 
consideration (“screening”).  Accounts for:
•A large number (even an infinity) of feasible alternatives

E.g., 150 possible locations X 20 different BMPs X 10 installation years

•Complex book-keeping & interactions 
E.g., sequences: land use X local BMP X downstream BMP 

E.g., effects of loading location & timing on Chl(a)

•Multiple objectives: show tradeoffs

•Risks: derive system performance risks from individual BMP risks
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Simulation vs. Optimization
BayFAST (Facility Assessment Scenario Tool, www.bayfast.org): 

User selects BMPsmodel calculates loadings: 
•User can adjust BMPs to meet TMDL target

Optimization:
User selects TMDLmodel suggests “best” BMPs.                  
Example inputs:
• BMP databases (e.g., Wieland et al. 2009) 

• “Response surface” modeling (e.g., statistical fit of CBP tool outputs)
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Questions optimization can address
1. What’s the least-cost portfolio of BMPs that achieves a TMDL?

2. What portfolios efficiently address multiple objectives? What are the 
tradeoffs?

3. What portfolios are within X% of the least-cost portfolio, yet are 
distinctly different?

4. How does considering uncertainty affect those solutions?

5. What trades of pollutant credits would be environmentally & 
economically beneficial?
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1. What’s the least-cost portfolio of BMPs 
that achieves a TMDL? 

Example: Green Infrastructure in 
Philadelphia

StormWISE (McGarity, 2012) chooses 
GI, BMPs to minimize cost of 
achieving targets for:
• Stormwater
• Sediment
• N
• P
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Questions
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http://stormwise.greenphilly.net
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Questions
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50% of Maximum 

The model suggests these as deserving of more detailed analysis
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Questions
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2. What portfolios efficiently address multiple objectives?  

No alternative is best in all 
objectives  
• So must consider tradeoffs

Optimization can suggest 
alternative efficient 
portfolios
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3. What portfolios are within X% of the least-cost 
portfolio, yet are distinctly different?

Distinct portfolios might be 
attractive relative to other, 
unquantified objectives

TMDL
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Portfolio D (More GI)
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4. How does considering uncertainty affect those 
solutions? 
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1. Chance constraint: want a 
90% chance of achieving 
TMDL, given uncertain BMP 
effectiveness

2. Adaptive management: Blue 
Earth Basin BMPs for non-
point sediment (Jacobi et 
al. 2013)

Maple 
River
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Adaptive management analysis in Maple Basin:
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First consider research / 
monitoring options in 3 
subwatersheds (W1, W2, 
W3)

Then implement BMPs

Decision Tree:
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Adaptive management analysis in Maple River
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Cost-Sediment tradeoff 
curve

a = optimal research / 
monitoring actions
• g = gullies

• f = field

• s = streambank
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5.  What trades of pollutant credits would be 
environmentally & economically beneficial?
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Calculate marginal cost of 
load reductions by basin

Recommend trades that 
lower cost while meeting 
loading target
• As suggested by CBP Nutrient 

Trading Negotiation Team 
(2002)
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What does it take?
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Agreement on what users want: objectives, alternatives to 
consider

Data / models relating alternatives to objectives 
• CBP models, databases

• BayFAST

Interface and solver
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Questions?
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Contact Info:

Ben Hobbs
bhobbs1@jhu.edu

http://cotesdarmor-turismo.com/compared-trouble-free-secrets-of-math-game.html
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