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An update on sensor arrays and cost considerations
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Chesapeake Bay Long-term Water Quality
Monitoring Program sampling design

* 156 stations
* Monthly cruise schedule
* 14-20 cruises per year

* Physical, chemical, biological
sampling




1.3. Seasonal variability of dead zone in the Bay
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We want reliable point estimates in space,
through time, at high frequency:.

* Improve our understanding of bay
dynamics at new resolutions and
update relationships with
environmental forcing

* Improve our understanding of
living resource relationships with
bay conditions

* Address regulatory assessment of
criteria across the full range of
durations address in Chesapeake
Bay water quality standards




cience for a changing world|

We have done very well with monitoring nearshore habitats in high frequency
at single depths
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Open Water:

Monitoring needs at high frequency how much?

JGR Oceans

Estimating Hypoxic Volume in the Chesapeake Bay Using Two
Continuously Sampled Oxygen Profiles

Aaron |. Bever @, Marjorie A. M. Friedrichs, Carl T. Friedrichs, Malcolm E. Scully
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Abstract

Low levels of dissolved oxygen (DO) occur in many embayments throughout the world
and have numerous detrimental effects on biota. Although measurement of in situ DO is
straightforward with modern instrumentation, quantifying the volume of water in a given
embayment that is hypoxic (hypoxic volume (HV)) is a more difficult task; however, this
information is critical for determining whether management efforts to increase DO are
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Sensor distribution and sampling design considerations:

Scully, M. 2016. Mixing of dissolved oxygen in Chesapeake Bay driven by the

interaction between wind-driven circulation and estuarine bathymetry.
JGR Oceans

a) 2011 Instrument locations b) Mooring details
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Vertical Profilers: Mainstem Bay. Precursor work to today.
M. Scully 2016. Mixing of dissolved oxygen in Chesapeake Bay driven by
the interaction between wind-driven circulation and estuarine bathymetry
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Vertical Profilers: Mainstem Bay. Precursor work to today.
M. Scully 2016. Mixing of dissolved oxygen in Chesapeake Bay driven by
the interaction between wind-driven circulation and estuarine bathymetry

a) Top-to-bottom salinity difference Mooring C

Mote: The cone contains the probable path of the storm center but does not show
the size of the storm. Hazardous conditions can occur outside of the cone.
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Dissolved oxygen: We have had some success with profilers in shallow river habitats

York River, VA. 1 week Summer 2011
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2020 GIT Project Goal:

Proof of concept in testing a
portable, easily deployable,
modest price sensor array for

. System schematic (right) is based on the example of CB4.3E, but SoundnNine UltiBuoy with
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2020. GIT-funded Pilot study on high frequency hypoxia
monitoring. Vertical array of open water dissolved oxygen
dynamics with vertical profiler data collection at 10-minute

intervals.
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Summer biweekly monitoring:
*Traditional monitoring program, summer, 1 D.O. profile per 14 days
*Vertical profiler @ 10 minute intervals = 2,016 views of water column D.O. per 14 days



Dissolved oxygen: We have had success with profilers in the open bay habitats
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Pushing into real world 4-D Hypoxia tracking —

Continuous water quality accounting for 3-D space
olus time.
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We want to integrate high frequency deep water
data profiles with nearshore continuous
monitoring for 4-dimensional habitat assessment
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Severn River time series. Muller and Muller, Heliyon, 2016.



ole point

We need more than total hypoxia. We need relia
uency.

estimates in 3D-space, through time, at high frec

* Improved estimate of hypoxic volume

* Improved understanding of location of
hypoxia in space, through time that living

resources are navigating
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We need 2 things:
1. Integrated monitoring to address time and space resolution
2. 4-D interpolator for continuity in habitat characterization

Bottom Oxygen: Forecast

September 10, 2020
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Figure 4b. Spring oligohaline CFD curves for chlorophyll a from reference water quality conditions.
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Targeting Dissolved Oxygen Assessment
needs, questions for the group:

* Build out network of vertical measures: minimum 2 suggested, more?
(DO, Temp and Salinity are necessary sensors here)

* Does “more” mean addressing lateral conditions of the mainstem?
Can we get what we need with a network of bottom sensors if we
have 2+ vertical realtime monitors in the mainstem?

* Vertical sensor array — minimum number, distribution? Do we mimic
long term monitoring depth profile distributions (place a lot of
sensors in the water) needed for defining AP, P, BP habitats?






First look model comparisions...
CB3D-ICM 1994
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Shallow water is important too:
Over 24% of Chesapeake Bay is <2m deep
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Deep water hypoxia is important... ...but fish kills tend to be shallow water phenomenon
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Table 3.1. A short list of recent articles comparing the precision of IDW to a subset of
other possible interpolation methods.

Authors Methods Compared | Variables Conclusions
Manipulated
Kravchenko (2003) Inverse Distance spatial structure and IDW better than OK

Weighting (IDW),
Ordinary Kriging
(OK)

sample grid spacing

unless sample sizes
were fairly large

Dille, et al. (2002)

IDW, OK, Minimum
Surface Curvature
(MC), Multiquadric
Radial Basis Function
(MUL)

neighborhood size,
spatial structure,
power coefficient in
IDW, sample grid
spacing, quadrat size

No interpolator
appears to be more
precise than another.
Sample grid spacing
and quadrat size were
deemed more
important.

Valley, et al. (2005) IDW, OK, Non- spatial structure, OK tended to be more
parametric Detrend + | sample size, quadrat precise but IDW was
Splines size very similar

Lloyd (2005) moving window spatial structure, KED and OK best
Regression (MWR), sample size
IDW, OK, simple
kriging with locally
varying mean (SKlm),
kriging with external
drift (KED)

Reinstorf, et al. IDW, OK, KED + single dataset was OK best

(2005)

deterministic
chemical transport
models

analyzed

Zimmerman, et al.
(1999)

2 types of IDW, UK,
OK

spatial structure,
sampling pattern,
population variance

UK and OK better
than IDW

3.3 Non-parametric Interpolation Methods

http://www.chesapeake.org/pubs/cfd_stac_final.pdf.
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Technique directions:
Combining observations and model results
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JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 1-21, doi:10.1002/jgre.20331, 2013

Combining observations and numerical model results to improve
estimates of hypoxic volume within the Chesapeake Bay, USA

Aaron J. Bever,'? Marjorie A. M. Friedrichs,' Carl T. Friedrichs,' Malcolm E. Scully,3
and Lyon W. J. Lanerolle*

Received 15 March 2013; revised 10 July 2013; accepted 25 July 2013.

[1] The overall size of the “dead zone™ within the main stem of the Chesapeake Bay and its
tidal tributaries is quantified by the hypoxic volume (HV), the volume of water with
dissolved oxygen (DO) less than 2 mg/L. To improve estimates of HV, DO was subsampled
from the output of 3-D model hindcasts at times/locations matching the set of 2004-2005
stations monitored by the Chesapeake Bay Program. The resulting station profiles were
interpolated to produce bay-wide estimates of HV in a manner consistent with nonsynoptic,
cruise-based estimates. Interpolations of the same stations sampled synoptically, as well as
multiple other combinations of station profiles, were examined in order to quantify
uncertainties associated with interpolating HV from observed profiles. The potential
uncertainty in summer HV estimates resulting from profiles being collected over 2 weeks
rather than synoptically averaged ~5 km®. This is larger than that due to sampling at
discrete stations and interpolating/extrapolating to the entire Chesapeake Bay (2.4 km®). As
a result, sampling fewer, selected stations over a shorter time period is likely to reduce
uncertainties associated with interpolating HV from observed profiles. A function was
derived that when applied to a subset of 13 stations, significantly improved estimates of HV.
Finally, multiple metrics for quantifying bay-wide hypoxia were examined, and cumulative
hypoxic volume was determined to be particularly useful, as a result of its insensitivity to
temporal errors and climate change. A final product of this analysis is a nearly three-decade
time series of improved estimates of HV for Chesapeake Bay.

Citation: Bever, A.J., M. A. M. Friedrichs, C. T. Friedrichs, M. E. Scully, and L. W. I. Lanerolle (2013), Combining observations and
numerical model results to improve estimates of hypoxic volume within the Chesapeake Bay, USA, J. Geophys. Res. Oceans, 118,
doi:10.1002/jgre.20331.




Summer dissolved
oxygen profiles in
Chesapeake Bay:

Four years with near
average January-May
Susquehanna
River flow

Extent of Anoxic Conditions
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